/// <summary> /// Find the minimum of the objective function given lower and upper bounds /// </summary> /// <param name="objective">The objective function, must support a gradient</param> /// <param name="lowerBound">The lower bound</param> /// <param name="upperBound">The upper bound</param> /// <param name="initialGuess">The initial guess</param> /// <returns>The MinimizationResult which contains the minimum and the ExitCondition</returns> public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector <double> lowerBound, Vector <double> upperBound, Vector <double> initialGuess) { _lowerBound = lowerBound; _upperBound = upperBound; if (!objective.IsGradientSupported) { throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization."); } // Check that dimensions match if ((lowerBound.Count != upperBound.Count) || (lowerBound.Count != initialGuess.Count)) { throw new ArgumentException("Dimensions of bounds and/or initial guess do not match."); } // Check that initial guess is feasible for (int ii = 0; ii < initialGuess.Count; ++ii) { if ((initialGuess[ii] < lowerBound[ii]) || (initialGuess[ii] > upperBound[ii])) { throw new ArgumentException("Initial guess is not in the feasible region"); } } objective.EvaluateAt(initialGuess); ValidateGradientAndObjective(objective); // Check that we're not already done var currentExitCondition = ExitCriteriaSatisfied(objective, null, 0); if (currentExitCondition != ExitCondition.None) { return(new MinimizationResult(objective, 0, currentExitCondition)); } // Set up line search algorithm var lineSearcher = new StrongWolfeLineSearch(1e-4, 0.9, Math.Max(ParameterTolerance, 1e-5), maxIterations: 1000); // Declare state variables Vector <double> reducedSolution1, reducedGradient, reducedInitialPoint, reducedCauchyPoint, solution1; Matrix <double> reducedHessian; List <int> reducedMap; // First step var pseudoHessian = CreateMatrix.DiagonalIdentity <double>(initialGuess.Count); // Determine active set var gradientProjectionResult = QuadraticGradientProjectionSearch.Search(objective.Point, objective.Gradient, pseudoHessian, lowerBound, upperBound); var cauchyPoint = gradientProjectionResult.CauchyPoint; var fixedCount = gradientProjectionResult.FixedCount; var isFixed = gradientProjectionResult.IsFixed; var freeCount = lowerBound.Count - fixedCount; if (freeCount > 0) { reducedGradient = new DenseVector(freeCount); reducedHessian = new DenseMatrix(freeCount, freeCount); reducedMap = new List <int>(freeCount); reducedInitialPoint = new DenseVector(freeCount); reducedCauchyPoint = new DenseVector(freeCount); CreateReducedData(objective.Point, cauchyPoint, isFixed, lowerBound, upperBound, objective.Gradient, pseudoHessian, reducedInitialPoint, reducedCauchyPoint, reducedGradient, reducedHessian, reducedMap); // Determine search direction and maximum step size reducedSolution1 = reducedInitialPoint + reducedHessian.Cholesky().Solve(-reducedGradient); solution1 = ReducedToFull(reducedMap, reducedSolution1, cauchyPoint); } else { solution1 = cauchyPoint; } var directionFromCauchy = solution1 - cauchyPoint; var maxStepFromCauchyPoint = FindMaxStep(cauchyPoint, directionFromCauchy, lowerBound, upperBound); var solution2 = cauchyPoint + (Math.Min(maxStepFromCauchyPoint, 1.0) * directionFromCauchy); var lineSearchDirection = solution2 - objective.Point; var maxLineSearchStep = FindMaxStep(objective.Point, lineSearchDirection, lowerBound, upperBound); var estStepSize = (-objective.Gradient * lineSearchDirection) / (lineSearchDirection * pseudoHessian * lineSearchDirection); var startingStepSize = Math.Min(Math.Max(estStepSize, 1.0), maxLineSearchStep); // Line search LineSearchResult lineSearchResult; try { lineSearchResult = lineSearcher.FindConformingStep(objective, lineSearchDirection, startingStepSize, upperBound: maxLineSearchStep); } catch (Exception e) { throw new InnerOptimizationException("Line search failed.", e); } var previousPoint = objective.Fork(); var candidatePoint = lineSearchResult.FunctionInfoAtMinimum; ValidateGradientAndObjective(candidatePoint); // Check that we're not done currentExitCondition = ExitCriteriaSatisfied(candidatePoint, previousPoint, 0); if (currentExitCondition != ExitCondition.None) { return(new MinimizationResult(candidatePoint, 0, currentExitCondition)); } var gradient = candidatePoint.Gradient; var step = candidatePoint.Point - initialGuess; // Subsequent steps int totalLineSearchSteps = lineSearchResult.Iterations; int iterationsWithNontrivialLineSearch = lineSearchResult.Iterations > 0 ? 0 : 1; int iterations = DoBfgsUpdate(ref currentExitCondition, lineSearcher, ref pseudoHessian, ref lineSearchDirection, ref previousPoint, ref lineSearchResult, ref candidatePoint, ref step, ref totalLineSearchSteps, ref iterationsWithNontrivialLineSearch); if ((iterations == MaximumIterations) && (currentExitCondition == ExitCondition.None)) { throw new MaximumIterationsException(string.Format("Maximum iterations ({0}) reached.", MaximumIterations)); } return(new MinimizationWithLineSearchResult(candidatePoint, iterations, currentExitCondition, totalLineSearchSteps, iterationsWithNontrivialLineSearch)); }
public MinimizationOutput FindMinimum(IObjectiveFunction objective, Vector <double> lower_bound, Vector <double> upper_bound, Vector <double> initial_guess) { if (!objective.GradientSupported) { throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization."); } if (!(objective is ObjectiveChecker)) { objective = new ObjectiveChecker(objective, this.ValidateObjective, this.ValidateGradient, null); } // Check that dimensions match if (lower_bound.Count != upper_bound.Count || lower_bound.Count != initial_guess.Count) { throw new ArgumentException("Dimensions of bounds and/or initial guess do not match."); } // Check that initial guess is feasible for (int ii = 0; ii < initial_guess.Count; ++ii) { if (initial_guess[ii] < lower_bound[ii] || initial_guess[ii] > upper_bound[ii]) { throw new ArgumentException("Initial guess is not in the feasible region"); } } IEvaluation initial_eval = objective.Evaluate(initial_guess); // Check that we're not already done ExitCondition current_exit_condition = this.ExitCriteriaSatisfied(initial_eval, null, lower_bound, upper_bound, 0); if (current_exit_condition != ExitCondition.None) { return(new MinimizationOutput(initial_eval, 0, current_exit_condition)); } // Set up line search algorithm var line_searcher = new StrongWolfeLineSearch(1e-4, 0.9, Math.Max(this.ParameterTolerance, 1e-5), max_iterations: 1000); // Declare state variables IEvaluation candidate_point, previous_point; double step_size; Vector <double> gradient, step, line_search_direction, reduced_solution1, reduced_gradient, reduced_initial_point, reduced_cauchy_point, solution1; Matrix <double> pseudo_hessian, reduced_hessian; List <int> reduced_map; // First step pseudo_hessian = DiagonalMatrix.CreateIdentity(initial_guess.Count); // Determine active set var gradient_projection_result = QuadraticGradientProjectionSearch.search(initial_eval.Point, initial_eval.Gradient, pseudo_hessian, lower_bound, upper_bound); var cauchy_point = gradient_projection_result.Item1; var fixed_count = gradient_projection_result.Item2; var is_fixed = gradient_projection_result.Item3; var free_count = lower_bound.Count - fixed_count; if (free_count > 0) { reduced_gradient = new DenseVector(free_count); reduced_hessian = new DenseMatrix(free_count, free_count); reduced_map = new List <int>(free_count); reduced_initial_point = new DenseVector(free_count); reduced_cauchy_point = new DenseVector(free_count); CreateReducedData(initial_eval.Point, cauchy_point, is_fixed, lower_bound, upper_bound, initial_eval.Gradient, pseudo_hessian, reduced_initial_point, reduced_cauchy_point, reduced_gradient, reduced_hessian, reduced_map); // Determine search direction and maximum step size reduced_solution1 = reduced_initial_point + reduced_hessian.Cholesky().Solve(-reduced_gradient); solution1 = reduced_to_full(reduced_map, reduced_solution1, cauchy_point); } else { solution1 = cauchy_point; } var direction_from_cauchy = solution1 - cauchy_point; var max_step_from_cauchy_point = FindMaxStep(cauchy_point, direction_from_cauchy, lower_bound, upper_bound); var solution2 = cauchy_point + Math.Min(max_step_from_cauchy_point, 1.0) * direction_from_cauchy; line_search_direction = solution2 - initial_eval.Point; var max_line_search_step = FindMaxStep(initial_eval.Point, line_search_direction, lower_bound, upper_bound); var est_step_size = -initial_eval.Gradient * line_search_direction / (line_search_direction * pseudo_hessian * line_search_direction); var starting_step_size = Math.Min(Math.Max(est_step_size, 1.0), max_line_search_step); // Line search LineSearchOutput result; try { result = line_searcher.FindConformingStep(objective, initial_eval, line_search_direction, starting_step_size, upper_bound: max_line_search_step); } catch (Exception e) { throw new InnerOptimizationException("Line search failed.", e); } previous_point = initial_eval; candidate_point = result.FunctionInfoAtMinimum; gradient = candidate_point.Gradient; step = candidate_point.Point - initial_guess; step_size = result.FinalStep; // Subsequent steps int iterations; int total_line_search_steps = result.Iterations; int iterations_with_nontrivial_line_search = result.Iterations > 0 ? 0 : 1; int steepest_descent_resets = 0; for (iterations = 1; iterations < this.MaximumIterations; ++iterations) { // Do BFGS update var y = candidate_point.Gradient - previous_point.Gradient; double sy = step * y; if (sy > 0.0) // only do update if it will create a positive definite matrix { double sts = step * step; //inverse_pseudo_hessian = inverse_pseudo_hessian + ((sy + y * inverse_pseudo_hessian * y) / Math.Pow(sy, 2.0)) * step.OuterProduct(step) - ((inverse_pseudo_hessian * y.ToColumnMatrix()) * step.ToRowMatrix() + step.ToColumnMatrix() * (y.ToRowMatrix() * inverse_pseudo_hessian)) * (1.0 / sy); var Hs = pseudo_hessian * step; var sHs = step * pseudo_hessian * step; pseudo_hessian = pseudo_hessian + y.OuterProduct(y) * (1.0 / sy) - Hs.OuterProduct(Hs) * (1.0 / sHs); } else { steepest_descent_resets += 1; //pseudo_hessian = LinearAlgebra.Double.DiagonalMatrix.Identity(initial_guess.Count); } // Determine active set gradient_projection_result = QuadraticGradientProjectionSearch.search(candidate_point.Point, candidate_point.Gradient, pseudo_hessian, lower_bound, upper_bound); cauchy_point = gradient_projection_result.Item1; fixed_count = gradient_projection_result.Item2; is_fixed = gradient_projection_result.Item3; free_count = lower_bound.Count - fixed_count; if (free_count > 0) { reduced_gradient = new DenseVector(free_count); reduced_hessian = new DenseMatrix(free_count, free_count); reduced_map = new List <int>(free_count); reduced_initial_point = new DenseVector(free_count); reduced_cauchy_point = new DenseVector(free_count); CreateReducedData(candidate_point.Point, cauchy_point, is_fixed, lower_bound, upper_bound, candidate_point.Gradient, pseudo_hessian, reduced_initial_point, reduced_cauchy_point, reduced_gradient, reduced_hessian, reduced_map); // Determine search direction and maximum step size reduced_solution1 = reduced_initial_point + reduced_hessian.Cholesky().Solve(-reduced_gradient); solution1 = reduced_to_full(reduced_map, reduced_solution1, cauchy_point); } else { solution1 = cauchy_point; } direction_from_cauchy = solution1 - cauchy_point; max_step_from_cauchy_point = FindMaxStep(cauchy_point, direction_from_cauchy, lower_bound, upper_bound); //var cauchy_eval = objective.Evaluate(cauchy_point); solution2 = cauchy_point + Math.Min(max_step_from_cauchy_point, 1.0) * direction_from_cauchy; line_search_direction = solution2 - candidate_point.Point; max_line_search_step = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound); //line_search_direction = solution1 - candidate_point.Point; //max_line_search_step = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound); if (max_line_search_step == 0.0) { line_search_direction = cauchy_point - candidate_point.Point; max_line_search_step = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound); } est_step_size = -candidate_point.Gradient * line_search_direction / (line_search_direction * pseudo_hessian * line_search_direction); starting_step_size = Math.Min(Math.Max(est_step_size, 1.0), max_line_search_step); // Line search try { result = line_searcher.FindConformingStep(objective, candidate_point, line_search_direction, starting_step_size, upper_bound: max_line_search_step); //result = line_searcher.FindConformingStep(objective, cauchy_eval, direction_from_cauchy, Math.Min(1.0, max_step_from_cauchy_point), upper_bound: max_step_from_cauchy_point); } catch (Exception e) { throw new InnerOptimizationException("Line search failed.", e); } iterations_with_nontrivial_line_search += result.Iterations > 0 ? 1 : 0; total_line_search_steps += result.Iterations; step_size = result.FinalStep; step = result.FunctionInfoAtMinimum.Point - candidate_point.Point; previous_point = candidate_point; candidate_point = result.FunctionInfoAtMinimum; current_exit_condition = this.ExitCriteriaSatisfied(candidate_point, previous_point, lower_bound, upper_bound, iterations); if (current_exit_condition != ExitCondition.None) { break; } } if (iterations == this.MaximumIterations && current_exit_condition == ExitCondition.None) { throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations)); } return(new MinimizationWithLineSearchOutput(candidate_point, iterations, current_exit_condition, total_line_search_steps, iterations_with_nontrivial_line_search)); }