public void CanEstimateParameters(double mu, double sigma) { var original = new LogNormal(mu, sigma, new Random(100)); var estimated = LogNormal.Estimate(original.Samples().Take(10000)); AssertHelpers.AlmostEqualRelative(mu, estimated.Mu, 1); AssertHelpers.AlmostEqualRelative(sigma, estimated.Sigma, 1); }
public void SetupDistributions() { dists = new IDistribution[8]; dists[0] = new Beta(1.0, 1.0); dists[1] = new ContinuousUniform(0.0, 1.0); dists[2] = new Gamma(1.0, 1.0); dists[3] = new Normal(0.0, 1.0); dists[4] = new Bernoulli(0.6); dists[5] = new Weibull(1.0, 1.0); dists[6] = new DiscreteUniform(1, 10); dists[7] = new LogNormal(1.0, 1.0); }
public void ValidateMean(double mu, double sigma, double mean) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(mean, n.Mean, 14); }
public void ValidateMaximum() { var n = new LogNormal(1.0, 2.0); Assert.AreEqual(Double.PositiveInfinity, n.Maximum); }
public void LogNormalCreateFailsWithBadParameters(double mu, double sigma) { var n = new LogNormal(mu, sigma); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">LogNormal distribution</a> public void Run() { // 1. Initialize the new instance of the LogNormal distribution class with parameters Mu = 0, Sigma = 1 var logNormal = new LogNormal(0, 1); Console.WriteLine(@"1. Initialize the new instance of the LogNormal distribution class with parameters Mu = {0}, Sigma = {1}", logNormal.Mu, logNormal.Sigma); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", logNormal); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", logNormal.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", logNormal.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", logNormal.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", logNormal.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", logNormal.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", logNormal.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", logNormal.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", logNormal.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", logNormal.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", logNormal.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", logNormal.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", logNormal.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples Console.WriteLine(@"3. Generate 10 samples"); for (var i = 0; i < 10; i++) { Console.Write(logNormal.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the LogNormal(0, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the LogNormal(0, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the LogNormal(0, 0.5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the LogNormal(0, 0.5) distribution and display histogram"); logNormal.Sigma = 0.5; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the LogNormal(5, 0.25) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the LogNormal(5, 0.25) distribution and display histogram"); logNormal.Mu = 5; logNormal.Sigma = 0.25; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); }
public void ValidateToString() { var n = new LogNormal(1d, 2d); Assert.AreEqual("LogNormal(μ = 1, σ = 2)", n.ToString()); }
public void ValidateMode(double mu, double sigma, double mode) { var n = new LogNormal(mu, sigma); Assert.AreEqual(mode, n.Mode); }
public void CanSampleSequence() { var n = new LogNormal(1.0, 2.0); var ied = n.Samples(); ied.Take(5).ToArray(); }
public void ValidateDensity(double mu, double sigma, double x, double p) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqual(p, n.Density(x), 14); AssertHelpers.AlmostEqual(p, LogNormal.PDF(mu, sigma, x), 14); }
public void SetSigmaFailsWithNegativeSigma() { var n = new LogNormal(1.0, 2.0); Assert.Throws<ArgumentOutOfRangeException>(() => n.Sigma = -1.0); }
public void CanSetMu(double mu) { var n = new LogNormal(1.0, 2.0); n.Mu = mu; }
public void ValidateToString() { var n = new LogNormal(1.0, 2.0); AssertEx.AreEqual<string>("LogNormal(Mu = 1, Sigma = 2)", n.ToString()); }
public void SetSigmaFailsWithNegativeSigma() { var n = new LogNormal(1.0, 2.0); n.Sigma = -1.0; }
public void ValidateMedian(double mu, double sigma, double median) { var n = new LogNormal(mu, sigma); Assert.AreEqual(median, n.Median); }
public void ValidateMinimum() { var n = new LogNormal(1.0, 2.0); Assert.AreEqual(0.0, n.Minimum); }
public void SetSigmaFailsWithNegativeSigma() { var n = new LogNormal(1.0, 2.0); Assert.That(() => n.Sigma = -1.0, Throws.ArgumentException); }
public void ValidateSkewness(double mu, double sigma, double skewness) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(skewness, n.Skewness, 13); }
public void ValidateCumulativeDistribution(double mu, double sigma, double x, double f) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(f, n.CumulativeDistribution(x), 7); AssertHelpers.AlmostEqualRelative(f, LogNormal.CDF(mu, sigma, x), 7); }
public void CanCreateLogNormal(double mu, double sigma) { var n = new LogNormal(mu, sigma); Assert.AreEqual(mu, n.Mu); Assert.AreEqual(sigma, n.Sigma); }
public void ValidateDensityLn(double mu, double sigma, double x, double p) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(p, n.DensityLn(x), 13); AssertHelpers.AlmostEqualRelative(p, LogNormal.PDFLn(mu, sigma, x), 13); }
public void CanSample() { var n = new LogNormal(1.0, 2.0); n.Sample(); }
public void ValidateEntropy(double mu, double sigma, double entropy) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(entropy, n.Entropy, 14); }
public void ValidateInverseCumulativeDistribution(double mu, double sigma, double x, double f) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(x, n.InverseCumulativeDistribution(f), 8); AssertHelpers.AlmostEqualRelative(x, LogNormal.InvCDF(mu, sigma, f), 8); }
public void CanSetSigma(double sigma) { var n = new LogNormal(1.0, 2.0); n.Sigma = sigma; }