/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Binomial_distribution">Binomial distribution</a> public void Run() { // 1. Initialize the new instance of the Binomial distribution class with parameters P = 0.2, N = 20 var binomial = new Binomial(0.2, 20); Console.WriteLine(@"1. Initialize the new instance of the Binomial distribution class with parameters P = {0}, N = {1}", binomial.P, binomial.N); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", binomial); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", binomial.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", binomial.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the Binomial distribution Console.WriteLine(@"3. Generate 10 samples of the Binomial distribution"); for (var i = 0; i < 10; i++) { Console.Write(binomial.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the Binomial(0.2, 20) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the Binomial(0.2, 20) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the Binomial(0.7, 20) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the Binomial(0.7, 20) distribution and display histogram"); binomial.P = 0.7; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the Binomial(0.5, 40) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the Binomial(0.5, 40) distribution and display histogram"); binomial.P = 0.5; binomial.N = 40; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); }
public void ValidateProbabilityLn(double p, int n, int x, double dln) { var b = new Binomial(p,n); AssertHelpers.AlmostEqual(dln, b.ProbabilityLn(x), 14); }