public void SetupDistributions() { dists = new IDistribution[8]; dists[0] = new Beta(1.0, 1.0); dists[1] = new ContinuousUniform(0.0, 1.0); dists[2] = new Gamma(1.0, 1.0); dists[3] = new Normal(0.0, 1.0); dists[4] = new Bernoulli(0.6); dists[5] = new Weibull(1.0, 1.0); dists[6] = new DiscreteUniform(1, 10); dists[7] = new LogNormal(1.0, 1.0); }
public void CanSampleSequence() { var n = new Beta(2.0, 3.0); var ied = n.Samples(); GC.KeepAlive(ied.Take(5).ToArray()); }
public void CanSampleSequence() { var n = new Beta(2.0, 3.0); var ied = n.Samples(); var e = ied.Take(5).ToArray(); }
public void CanCreateBeta(double a, double b) { var n = new Beta(a, b); AssertEx.AreEqual<double>(a, n.A); AssertEx.AreEqual<double>(b, n.B); }
public void ValidateToString() { var n = new Beta(1.0, 2.0); AssertEx.AreEqual<string>("Beta(A = 1, B = 2)", n.ToString()); }
public void ValidateMode(double a, double b, double mode) { var n = new Beta(a, b); AssertEx.AreEqual<double>(mode, n.Mode); }
public void ValidateMedian(double a, double b) { var n = new Beta(a, 1.0); var m = n.Median; }
public void ValidateEntropy(double a, double b, double entropy) { var n = new Beta(a, b); AssertHelpers.AlmostEqual(entropy, n.Entropy, 14); }
public void ValidateMedianThrowsNotSupportedException() { var n = new Beta(0.0, 1.0); Assert.Throws<NotSupportedException>(() => { var m = n.Median; }); }
public void ValidateMaximum() { var n = new Beta(1.0, 1.0); Assert.AreEqual(1.0, n.Maximum); }
public void ValidateInverseCumulativeDistribution(double a, double b, double x, double p) { var dist = new Beta(a, b); Assert.That(dist.InverseCumulativeDistribution(p), Is.EqualTo(x).Within(1e-6)); Assert.That(Beta.InvCDF(a, b, p), Is.EqualTo(x).Within(1e-6)); }
public void ValidateDensityLn(double a, double b, double x, double pdfln) { var n = new Beta(a, b); AssertHelpers.AlmostEqualRelative(pdfln, n.DensityLn(x), 13); AssertHelpers.AlmostEqualRelative(pdfln, Beta.PDFLn(a, b, x), 13); }
public void ValidateDensity(double a, double b, double x, double pdf) { var n = new Beta(a, b); AssertHelpers.AlmostEqualRelative(pdf, n.Density(x), 12); AssertHelpers.AlmostEqualRelative(pdf, Beta.PDF(a, b, x), 12); }
public void ValidateCumulativeDistribution(double a, double b, double x, double p) { var dist = new Beta(a, b); Assert.That(dist.CumulativeDistribution(x), Is.EqualTo(p).Within(1e-13)); Assert.That(Beta.CDF(a, b, x), Is.EqualTo(p).Within(1e-13)); }
public void SetShapeBFailsWithNegativeB() { var n = new Beta(1.0, 1.0); Assert.That(() => n.B = -1.0, Throws.ArgumentException); }
public void ValidateDensity(double a, double b, double x, double pdf) { var n = new Beta(a, b); AssertHelpers.AlmostEqual(pdf, n.Density(x), 13); }
public void ValidateDensityLn(double a, double b, double x, double pdfln) { var n = new Beta(a, b); AssertHelpers.AlmostEqual(pdfln, n.DensityLn(x), 14); }
public void ValidateToString() { var n = new Beta(1d, 2d); Assert.AreEqual("Beta(α = 1, β = 2)", n.ToString()); }
public void ValidateMean(double a, double b, double mean) { var n = new Beta(a, b); AssertEx.AreEqual<double>(mean, n.Mean); }
public void ValidateBetaSpecialCaseDensityLn(double x) { var d = new Dirichlet(new[] { 0.1, 0.3 }); var beta = new Beta(0.1, 0.3); AssertHelpers.AlmostEqualRelative(d.DensityLn(new[] { x }), beta.DensityLn(x), 10); }
public void ValidateMinimum() { var n = new Beta(1.0, 1.0); AssertEx.AreEqual<double>(0.0, n.Minimum); }
public void CanSetShapeA(double a) { var n = new Beta(1.0, 1.0); n.A = a; }
public void ValidateSkewness(double a, double b, double skewness) { var n = new Beta(a, b); AssertHelpers.AlmostEqual(skewness, n.Skewness, 15); }
public void CanSetShapeB(double b) { var n = new Beta(1.0, 1.0); n.B = b; }
public void BetaCreateFailsWithBadParameters(double a, double b) { var n = new Beta(a, b); }
public void SetShapeAFailsWithNegativeA() { var n = new Beta(1.0, 1.0); n.A = -1.0; }
public void CanSample() { var n = new Beta(2.0, 3.0); var d = n.Sample(); }
public void SetShapeBFailsWithNegativeB() { var n = new Beta(1.0, 1.0); n.B = -1.0; }
public void ValidateCumulativeDistribution(double a, double b, double x, double cdf) { var n = new Beta(a, b); AssertHelpers.AlmostEqual(cdf, n.CumulativeDistribution(x), 13); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a> public void Run() { // 1. Initialize the new instance of the Beta distribution class with parameters a = 5 and b = 1. var beta = new Beta(5, 1); Console.WriteLine(@"1. Initialize the new instance of the Beta distribution class with parameters a = {0} and b = {1}", beta.A, beta.B); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", beta); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", beta.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", beta.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", beta.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", beta.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", beta.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", beta.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", beta.Mean.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", beta.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", beta.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", beta.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", beta.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the Beta distribution Console.WriteLine(@"3. Generate 10 samples of the Beta distribution"); for (var i = 0; i < 10; i++) { Console.Write(beta.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the Beta(5, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the Beta(5, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = beta.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the Beta(2, 5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the Beta(2, 5) distribution and display histogram"); beta.A = 2; beta.B = 5; for (var i = 0; i < data.Length; i++) { data[i] = beta.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the Beta distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the Beta(0.5, 0.5) distribution and display histogram"); beta.A = 0.5; beta.B = 0.5; for (var i = 0; i < data.Length; i++) { data[i] = beta.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 7. Generate 100000 samples of the Beta distribution and display histogram Console.WriteLine(@"7. Generate 100000 samples of the Beta(2, 2) distribution and display histogram"); beta.A = 2; beta.B = 2; for (var i = 0; i < data.Length; i++) { data[i] = beta.Sample(); } ConsoleHelper.DisplayHistogram(data); }