public override void ExecuteExample() { // <a href="http://en.wikipedia.org/wiki/Binomial_distribution">Binomial distribution</a> MathDisplay.WriteLine("<b>Binomial distribution</b>"); // 1. Initialize the new instance of the Binomial distribution class with parameters P = 0.2, N = 20 var binomial = new Binomial(0.2, 20); MathDisplay.WriteLine(@"1. Initialize the new instance of the Binomial distribution class with parameters P = {0}, N = {1}", binomial.P, binomial.N); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", binomial); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", binomial.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", binomial.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Binomial distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Binomial distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(binomial.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Bernoulli_distribution">Bernoulli distribution</a> MathDisplay.WriteLine("<b>Bernoulli distribution</b>"); // 1. Initialize the new instance of the Bernoulli distribution class with parameter P = 0.2 var bernoulli = new Bernoulli(0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the Bernoulli distribution class with parameter P = {0}", bernoulli.P); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", bernoulli); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", bernoulli.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", bernoulli.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", bernoulli.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", bernoulli.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", bernoulli.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", bernoulli.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", bernoulli.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", bernoulli.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", bernoulli.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", bernoulli.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", bernoulli.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Bernoulli distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Bernoulli distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(bernoulli.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Categorical_distribution">Categorical distribution</a> MathDisplay.WriteLine("<b>Categorical distribution</b>"); // 1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45) var binomialC = new Categorical(new[] { 0.1, 0.2, 0.25, 0.45 }); MathDisplay.WriteLine(@"1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)"); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", binomialC); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", binomialC.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", binomialC.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", binomialC.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", binomialC.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", binomialC.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", binomialC.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", binomialC.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", binomialC.Median.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", binomialC.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", binomialC.StdDev.ToString(" #0.00000;-#0.00000")); // 3. Generate 10 samples of the Categorical distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Categorical distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(binomialC.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution">ConwayMaxwellPoisson distribution</a> MathDisplay.WriteLine("<b>Conway Maxwell Poisson distribution</b>"); // 1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = 2, Nu = 1 var conwayMaxwellPoisson = new ConwayMaxwellPoisson(2, 1); MathDisplay.WriteLine(@"1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = {0}, Nu = {1}", conwayMaxwellPoisson.Lambda, conwayMaxwellPoisson.Nu); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", conwayMaxwellPoisson); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", conwayMaxwellPoisson.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", conwayMaxwellPoisson.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", conwayMaxwellPoisson.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", conwayMaxwellPoisson.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", conwayMaxwellPoisson.Mean.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", conwayMaxwellPoisson.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", conwayMaxwellPoisson.StdDev.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the ConwayMaxwellPoisson distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the ConwayMaxwellPoisson distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(conwayMaxwellPoisson.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Discrete_uniform">DiscreteUniform distribution</a> MathDisplay.WriteLine("<b>Discrete Uniform distribution</b>"); // 1. Initialize the new instance of the DiscreteUniform distribution class with parameters LowerBound = 2, UpperBound = 10 var discreteUniform = new DiscreteUniform(2, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the DiscreteUniform distribution class with parameters LowerBound = {0}, UpperBound = {1}", discreteUniform.LowerBound, discreteUniform.UpperBound); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", discreteUniform); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", discreteUniform.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", discreteUniform.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", discreteUniform.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", discreteUniform.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", discreteUniform.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", discreteUniform.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", discreteUniform.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", discreteUniform.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", discreteUniform.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", discreteUniform.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", discreteUniform.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", discreteUniform.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the DiscreteUniform distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the DiscreteUniform distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(discreteUniform.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Geometric_distribution">Geometric distribution</a> MathDisplay.WriteLine("<b>Geometric distribution</b>"); // 1. Initialize the new instance of the Geometric distribution class with parameter P = 0.2 var geometric = new Geometric(0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the Geometric distribution class with parameter P = {0}", geometric.P); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", geometric); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", geometric.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", geometric.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", geometric.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", geometric.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", geometric.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", geometric.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", geometric.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", geometric.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", geometric.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", geometric.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", geometric.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", geometric.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Geometric distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Geometric distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(geometric.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Hypergeometric_distribution">Hypergeometric distribution</a> MathDisplay.WriteLine("<b>Hypergeometric distribution</b>"); // 1. Initialize the new instance of the Hypergeometric distribution class with parameters PopulationSize = 10, M = 2, N = 8 var hypergeometric = new Hypergeometric(30, 15, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the Hypergeometric distribution class with parameters Population = {0}, Success = {1}, Draws = {2}", hypergeometric.Population, hypergeometric.Success, hypergeometric.Draws); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", hypergeometric); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", hypergeometric.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", hypergeometric.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", hypergeometric.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", hypergeometric.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", hypergeometric.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", hypergeometric.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", hypergeometric.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", hypergeometric.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", hypergeometric.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", hypergeometric.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Hypergeometric distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Hypergeometric distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(hypergeometric.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Negative_binomial">NegativeBinomial distribution</a> MathDisplay.WriteLine("<b>Negative Binomial distribution</b>"); // 1. Initialize the new instance of the NegativeBinomial distribution class with parameters P = 0.2, R = 20 var negativeBinomial = new NegativeBinomial(20, 0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the NegativeBinomial distribution class with parameters P = {0}, N = {1}", negativeBinomial.P, negativeBinomial.R); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", negativeBinomial); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", negativeBinomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", negativeBinomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", negativeBinomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", negativeBinomial.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", negativeBinomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", negativeBinomial.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", negativeBinomial.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", negativeBinomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", negativeBinomial.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", negativeBinomial.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the NegativeBinomial distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the NegativeBinomial distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(negativeBinomial.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> MathDisplay.WriteLine("<b>Poisson distribution</b>"); // 1. Initialize the new instance of the Poisson distribution class with parameter Lambda = 1 var poisson = new Poisson(1); MathDisplay.WriteLine(@"1. Initialize the new instance of the Poisson distribution class with parameter Lambda = {0}", poisson.Lambda); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", poisson); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", poisson.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", poisson.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", poisson.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", poisson.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", poisson.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", poisson.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", poisson.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", poisson.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", poisson.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", poisson.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", poisson.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", poisson.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Poisson distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Poisson distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(poisson.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Zipf_distribution">Zipf distribution</a> MathDisplay.WriteLine("<b>Zipf distribution</b>"); // 1. Initialize the new instance of the Zipf distribution class with parameters S = 5, N = 10 var zipf = new Zipf(5, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the Zipf distribution class with parameters S = {0}, N = {1}", zipf.S, zipf.N); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", zipf); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", zipf.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", zipf.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", zipf.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", zipf.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", zipf.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", zipf.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", zipf.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", zipf.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", zipf.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", zipf.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", zipf.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Zipf distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Zipf distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(zipf.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); }
/// <summary> /// Examples of generic function sampling and quantization providers /// </summary> public override void ExecuteExample() { MathDisplay.WriteLine("<b>Chebyshev sampling</b>"); // 1. Get 20 samples of f(x) = (x * x) / 2 at the roots of the Chebyshev polynomial of the first kind within interval [0, 10] var roots = FindRoots.ChebychevPolynomialFirstKind(20, 0, 10); var result = Generate.Map <double, double>(roots, Function); MathDisplay.WriteLine(@"1. Get 20 samples of f(x) = (x * x) / 2 at the roots of the Chebyshev polynomial of the first kind within interval [0, 10]"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 2. Get 20 samples of f(x) = (x * x) / 2 at the roots of the Chebyshev polynomial of the second kind within interval [0, 10] roots = FindRoots.ChebychevPolynomialSecondKind(20, 0, 10); result = Generate.Map <double, double>(roots, Function); MathDisplay.WriteLine(@"2. Get 20 samples of f(x) = (x * x) / 2 at the roots of the Chebyshev polynomial of the second kind within interval [0, 10]"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Equidistant sampling</b>"); // 1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5] result = Generate.LinearSpacedMap <double>(11, -5, 5, Function); MathDisplay.WriteLine(@"1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5]"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points double[] samplePoints = Generate.LinearSpaced(10, 1.0, 5.5); result = Generate.Map <double, double>(samplePoints, Function); MathDisplay.WriteLine(@"2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points"); MathDisplay.Write(@"Points: "); for (var i = 0; i < samplePoints.Length; i++) { MathDisplay.Write(samplePoints[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.Write(@"Values: "); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5 result = Generate.PeriodicMap <double>(10, Function, 10, 1.0, 10, 5); MathDisplay.WriteLine(@"3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Random sampling</b>"); // 1. Get 10 random samples of f(x) = (x * x) / 2 using continuous uniform distribution on [-10, 10] var uniform = new ContinuousUniform(-10, 10); result = Generate.RandomMap <double>(10, uniform, Function); MathDisplay.WriteLine(@" 1. Get 10 random samples of f(x) = (x * x) / 2 using continuous uniform distribution on [-10, 10]"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 2. Get 10 random samples of f(x) = (x * x) / 2 using Exponential(1) distribution and retrieve sample points var exponential = new Exponential(1); samplePoints = Generate.Random(10, exponential); result = Generate.Map <double, double>(samplePoints, Function); MathDisplay.WriteLine(@"2. Get 10 random samples of f(x) = (x * x) / 2 using Exponential(1) distribution and retrieve sample points"); MathDisplay.Write(@"Points: "); for (var i = 0; i < samplePoints.Length; i++) { MathDisplay.Write(samplePoints[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.Write(@"Values: "); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 3. Get 10 random samples of f(x, y) = (x * y) / 2 using ChiSquare(10) distribution var chiSquare = new ChiSquared(10); result = Generate.RandomMap2 <double>(10, chiSquare, TwoDomainFunction); MathDisplay.WriteLine(@" 3. Get 10 random samples of f(x, y) = (x * y) / 2 using ChiSquare(10) distribution"); for (var i = 0; i < result.Length; i++) { MathDisplay.Write(result[i].ToString("N") + @" "); } MathDisplay.WriteLine(); }
/// <summary> /// Executes the example. /// </summary> /// <seealso cref="http://en.wikipedia.org/wiki/Random_number_generation">Random number generation</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Linear_congruential_generator">Linear congruential generator</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Mersenne_twister">Mersenne twister</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator">Lagged Fibonacci generator</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Xorshift">Xorshift</seealso> public override void ExecuteExample() { // All RNG classes in MathNet have the following counstructors: // - RNG(int seed, bool threadSafe): initializes a new instance using a specific seed value and thread // safe property // - RNG(int seed): initializes a new instance using a specific seed value. Thread safe property is set // to Control.ThreadSafeRandomNumberGenerators // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and // specific thread safe property // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and // thread safe property set to Control.ThreadSafeRandomNumberGenerators // All RNG classes in MathNet have next methods to produce random values: // - double[] NextDouble(int n): returns an "n"-size array of uniformly distributed random doubles in // the interval [0.0,1.0]; // - int Next(): returns a nonnegative random number; // - int Next(int maxValue): returns a random number less then a specified maximum; // - int Next(int minValue, int maxValue): returns a random number within a specified range; // - void NextBytes(byte[] buffer): fills the elements of a specified array of bytes with random numbers; // All RNG classes in MathNet have next extension methods to produce random values: // - long NextInt64(): returns a nonnegative random number less than "Int64.MaxValue"; // - int NextFullRangeInt32(): returns a random number of the full Int32 range; // - long NextFullRangeInt64(): returns a random number of the full Int64 range; // - decimal NextDecimal(): returns a nonnegative decimal floating point random number less than 1.0; // 1. Multiplicative congruential generator using a modulus of 2^31-1 and a multiplier of 1132489760 var mcg31M1 = new Mcg31m1(1); MathDisplay.WriteLine(@"1. Generate 10 random double values using Multiplicative congruential generator with a modulus of 2^31-1 and a multiplier of 1132489760"); var randomValues = mcg31M1.NextDoubles(10); for (var i = 0; i < randomValues.Length; i++) { MathDisplay.Write(randomValues[i].ToString("N") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 2. Multiplicative congruential generator using a modulus of 2^59 and a multiplier of 13^13 var mcg59 = new Mcg59(1); MathDisplay.WriteLine(@"2. Generate 10 random integer values using Multiplicative congruential generator with a modulus of 2^59 and a multiplier of 13^13"); for (var i = 0; i < 10; i++) { MathDisplay.Write(mcg59.Next() + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 3. Random number generator using Mersenne Twister 19937 algorithm var mersenneTwister = new MersenneTwister(1); MathDisplay.WriteLine(@"3. Generate 10 random integer values less then 100 using Mersenne Twister 19937 algorithm"); for (var i = 0; i < 10; i++) { MathDisplay.Write(mersenneTwister.Next(100) + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 4. Multiple recursive generator with 2 components of order 3 var mrg32K3A = new Mrg32k3a(1); MathDisplay.WriteLine(@"4. Generate 10 random integer values in range [50;100] using multiple recursive generator with 2 components of order 3"); for (var i = 0; i < 10; i++) { MathDisplay.Write(mrg32K3A.Next(50, 100) + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 5. Parallel Additive Lagged Fibonacci pseudo-random number generator var palf = new Palf(1); MathDisplay.WriteLine(@"5. Generate 10 random bytes using Parallel Additive Lagged Fibonacci pseudo-random number generator"); var bytes = new byte[10]; palf.NextBytes(bytes); for (var i = 0; i < bytes.Length; i++) { MathDisplay.Write(bytes[i] + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 6. A random number generator based on "System.Security.Cryptography.RandomNumberGenerator" class in // the .NET library var systemCrypto = new CryptoRandomSource(); MathDisplay.WriteLine(@"6. Generate 10 random decimal values using RNG based on 'System.Security.Cryptography.RandomNumberGenerator'"); for (var i = 0; i < 10; i++) { MathDisplay.Write(systemCrypto.NextDecimal().ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 7. Wichmann-Hill’s 1982 combined multiplicative congruential generator var rngWh1982 = new WH1982(); MathDisplay.WriteLine(@"7. Generate 10 random full Int32 range values using Wichmann-Hill’s 1982 combined multiplicative congruential generator"); for (var i = 0; i < 10; i++) { MathDisplay.Write(rngWh1982.NextFullRangeInt32() + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 8. Wichmann-Hill’s 2006 combined multiplicative congruential generator. var rngWh2006 = new WH2006(); MathDisplay.WriteLine(@"8. Generate 10 random full Int64 range values using Wichmann-Hill’s 2006 combined multiplicative congruential generator"); for (var i = 0; i < 10; i++) { MathDisplay.Write(rngWh2006.NextFullRangeInt32() + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 9. Multiply-with-carry Xorshift pseudo random number generator var xorshift = new Xorshift(); MathDisplay.WriteLine(@"9. Generate 10 random nonnegative values less than Int64.MaxValue using Multiply-with-carry Xorshift pseudo random number generator"); for (var i = 0; i < 10; i++) { MathDisplay.Write(xorshift.NextInt64() + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); }
/// <summary> /// Executes the example. /// </summary> public override void ExecuteExample() { // <seealso cref="http://en.wikipedia.org/wiki/Beta_function">Beta function</seealso> MathDisplay.WriteLine("<b>Beta fuction</b>"); // 1. Compute the Beta function at z = 1.0, w = 3.0 MathDisplay.WriteLine(@"1. Compute the Beta function at z = 1.0, w = 3.0"); MathDisplay.WriteLine(SpecialFunctions.Beta(1.0, 3.0).ToString()); MathDisplay.WriteLine(); // 2. Compute the logarithm of the Beta function at z = 1.0, w = 3.0 MathDisplay.WriteLine(@"2. Compute the logarithm of the Beta function at z = 1.0, w = 3.0"); MathDisplay.WriteLine(SpecialFunctions.BetaLn(1.0, 3.0).ToString()); MathDisplay.WriteLine(); // 3. Compute the Beta incomplete function at z = 1.0, w = 3.0, x = 0.7 MathDisplay.WriteLine(@"3. Compute the Beta incomplete function at z = 1.0, w = 3.0, x = 0.7"); MathDisplay.WriteLine(SpecialFunctions.BetaIncomplete(1.0, 3.0, 0.7).ToString()); MathDisplay.WriteLine(); // 4. Compute the Beta incomplete function at z = 1.0, w = 3.0, x = 1.0 MathDisplay.WriteLine(@"4. Compute the Beta incomplete function at z = 1.0, w = 3.0, x = 1.0"); MathDisplay.WriteLine(SpecialFunctions.BetaIncomplete(1.0, 3.0, 1.0).ToString()); MathDisplay.WriteLine(); // 5. Compute the Beta regularized function at z = 1.0, w = 3.0, x = 0.7 MathDisplay.WriteLine(@"5. Compute the Beta regularized function at z = 1.0, w = 3.0, x = 0.7"); MathDisplay.WriteLine(SpecialFunctions.BetaRegularized(1.0, 3.0, 0.7).ToString()); MathDisplay.WriteLine(); // 6. Compute the Beta regularized function at z = 1.0, w = 3.0, x = 1.0 MathDisplay.WriteLine(@"6. Compute the Beta regularized function at z = 1.0, w = 3.0, x = 1.0"); MathDisplay.WriteLine(SpecialFunctions.BetaRegularized(1.0, 3.0, 1.0).ToString()); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Common functions</b>"); // 1. Calculate the Digamma function at point 5.0 // <seealso cref="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</seealso> MathDisplay.WriteLine(@"1. Calculate the Digamma function at point 5.0"); MathDisplay.WriteLine(SpecialFunctions.DiGamma(5.0).ToString()); MathDisplay.WriteLine(); // 2. Calculate the inverse Digamma function at point 1.5 MathDisplay.WriteLine(@"2. Calculate the inverse Digamma function at point 1.5"); MathDisplay.WriteLine(SpecialFunctions.DiGammaInv(1.5).ToString()); MathDisplay.WriteLine(); // 3. Calculate the 10'th Harmonic number // <seealso cref="http://en.wikipedia.org/wiki/Harmonic_number">Harmonic number</seealso> MathDisplay.WriteLine(@"3. Calculate the 10'th Harmonic number"); MathDisplay.WriteLine(SpecialFunctions.Harmonic(10).ToString()); MathDisplay.WriteLine(); // 4. Calculate the generalized harmonic number of order 10 of 3.0. // <seealso cref="http://en.wikipedia.org/wiki/Harmonic_number#Generalized_harmonic_numbers">Generalized harmonic numbers</seealso> MathDisplay.WriteLine(@"4. Calculate the generalized harmonic number of order 10 of 3.0"); MathDisplay.WriteLine(SpecialFunctions.GeneralHarmonic(10, 3.0).ToString()); MathDisplay.WriteLine(); // 5. Calculate the logistic function of 3.0 // <seealso cref="http://en.wikipedia.org/wiki/Logistic_function">Logistic function</seealso> MathDisplay.WriteLine(@"5. Calculate the logistic function of 3.0"); MathDisplay.WriteLine(SpecialFunctions.Logistic(3.0).ToString()); MathDisplay.WriteLine(); // 6. Calculate the logit function of 0.3 // <seealso cref="http://en.wikipedia.org/wiki/Logit">Logit function</seealso> MathDisplay.WriteLine(@"6. Calculate the logit function of 0.3"); MathDisplay.WriteLine(SpecialFunctions.Logit(0.3).ToString()); MathDisplay.WriteLine(); // <seealso cref="http://en.wikipedia.org/wiki/Error_function">Error function</seealso> MathDisplay.WriteLine("<b>Error function</b>"); // 1. Calculate the error function at point 2 MathDisplay.WriteLine(@"1. Calculate the error function at point 2"); MathDisplay.WriteLine(SpecialFunctions.Erf(2).ToString()); MathDisplay.WriteLine(); // 2. Sample 10 values of the error function in [-1.0; 1.0] MathDisplay.WriteLine(@"2. Sample 10 values of the error function in [-1.0; 1.0]"); var data = Generate.LinearSpacedMap <double>(10, -1.0, 1.0, SpecialFunctions.Erf); for (var i = 0; i < data.Length; i++) { MathDisplay.Write(data[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 3. Calculate the complementary error function at point 2 MathDisplay.WriteLine(@"3. Calculate the complementary error function at point 2"); MathDisplay.WriteLine(SpecialFunctions.Erfc(2).ToString()); MathDisplay.WriteLine(); // 4. Sample 10 values of the complementary error function in [-1.0; 1.0] MathDisplay.WriteLine(@"4. Sample 10 values of the complementary error function in [-1.0; 1.0]"); data = Generate.LinearSpacedMap <double>(10, -1.0, 1.0, SpecialFunctions.Erfc); for (var i = 0; i < data.Length; i++) { MathDisplay.Write(data[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 5. Calculate the inverse error function at point z=0.5 MathDisplay.WriteLine(@"5. Calculate the inverse error function at point z=0.5"); MathDisplay.WriteLine(SpecialFunctions.ErfInv(0.5).ToString()); MathDisplay.WriteLine(); // 6. Sample 10 values of the inverse error function in [-1.0; 1.0] MathDisplay.WriteLine(@"6. Sample 10 values of the inverse error function in [-1.0; 1.0]"); data = Generate.LinearSpacedMap <double>(10, -1.0, 1.0, SpecialFunctions.ErfInv); for (var i = 0; i < data.Length; i++) { MathDisplay.Write(data[i].ToString("N") + @" "); } MathDisplay.WriteLine(); MathDisplay.WriteLine(); // 7. Calculate the complementary inverse error function at point z=0.5 MathDisplay.WriteLine(@"7. Calculate the complementary inverse error function at point z=0.5"); MathDisplay.WriteLine(SpecialFunctions.ErfcInv(0.5).ToString()); MathDisplay.WriteLine(); // 8. Sample 10 values of the complementary inverse error function in [-1.0; 1.0] MathDisplay.WriteLine(@"8. Sample 10 values of the complementary inverse error function in [-1.0; 1.0]"); data = Generate.LinearSpacedMap <double>(10, -1.0, 1.0, SpecialFunctions.ErfcInv); for (var i = 0; i < data.Length; i++) { MathDisplay.Write(data[i].ToString("N") + @" "); } MathDisplay.WriteLine(); // <seealso cref="http://en.wikipedia.org/wiki/Factorial">Factorial</seealso> MathDisplay.WriteLine("<b>Factorial</b>"); // 1. Compute the factorial of 5 MathDisplay.WriteLine(@"1. Compute the factorial of 5"); MathDisplay.WriteLine(SpecialFunctions.Factorial(5).ToString("N")); MathDisplay.WriteLine(); // 2. Compute the logarithm of the factorial of 5 MathDisplay.WriteLine(@"2. Compute the logarithm of the factorial of 5"); MathDisplay.WriteLine(SpecialFunctions.FactorialLn(5).ToString("N")); MathDisplay.WriteLine(); // <seealso cref="http://en.wikipedia.org/wiki/Binomial_coefficient">Binomial coefficient</seealso> MathDisplay.WriteLine("<b>Binomial coefficient</b>"); // 3. Compute the binomial coefficient: 10 choose 8 MathDisplay.WriteLine(@"3. Compute the binomial coefficient: 10 choose 8"); MathDisplay.WriteLine(SpecialFunctions.Binomial(10, 8).ToString("N")); MathDisplay.WriteLine(); // 4. Compute the logarithm of the binomial coefficient: 10 choose 8 MathDisplay.WriteLine(@"4. Compute the logarithm of the binomial coefficient: 10 choose 8"); MathDisplay.WriteLine(SpecialFunctions.BinomialLn(10, 8).ToString("N")); MathDisplay.WriteLine(); // <seealso cref="http://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</seealso> MathDisplay.WriteLine("<b>Multinomial coefficient</b>"); // 5. Compute the multinomial coefficient: 10 choose 2, 3, 5 MathDisplay.WriteLine(@"5. Compute the multinomial coefficient: 10 choose 2, 3, 5"); MathDisplay.WriteLine(SpecialFunctions.Multinomial(10, new[] { 2, 3, 5 }).ToString("N")); MathDisplay.WriteLine(); // <seealso cref="http://en.wikipedia.org/wiki/Gamma_function">Gamma function</seealso> MathDisplay.WriteLine("<b>Gamma function</b>"); // 1. Compute the Gamma function of 10 MathDisplay.WriteLine(@"1. Compute the Gamma function of 10"); MathDisplay.WriteLine(SpecialFunctions.Gamma(10).ToString("N")); MathDisplay.WriteLine(); // 2. Compute the logarithm of the Gamma function of 10 MathDisplay.WriteLine(@"2. Compute the logarithm of the Gamma function of 10"); MathDisplay.WriteLine(SpecialFunctions.GammaLn(10).ToString("N")); MathDisplay.WriteLine(); // 3. Compute the lower incomplete gamma(a, x) function at a = 10, x = 14 MathDisplay.WriteLine(@"3. Compute the lower incomplete gamma(a, x) function at a = 10, x = 14"); MathDisplay.WriteLine(SpecialFunctions.GammaLowerIncomplete(10, 14).ToString("N")); MathDisplay.WriteLine(); // 4. Compute the lower incomplete gamma(a, x) function at a = 10, x = 100 MathDisplay.WriteLine(@"4. Compute the lower incomplete gamma(a, x) function at a = 10, x = 100"); MathDisplay.WriteLine(SpecialFunctions.GammaLowerIncomplete(10, 100).ToString("N")); MathDisplay.WriteLine(); // 5. Compute the upper incomplete gamma(a, x) function at a = 10, x = 0 MathDisplay.WriteLine(@"5. Compute the upper incomplete gamma(a, x) function at a = 10, x = 0"); MathDisplay.WriteLine(SpecialFunctions.GammaUpperIncomplete(10, 0).ToString("N")); MathDisplay.WriteLine(); // 6. Compute the upper incomplete gamma(a, x) function at a = 10, x = 10 MathDisplay.WriteLine(@"6. Compute the upper incomplete gamma(a, x) function at a = 10, x = 100"); MathDisplay.WriteLine(SpecialFunctions.GammaLowerIncomplete(10, 10).ToString("N")); MathDisplay.WriteLine(); // 7. Compute the lower regularized gamma(a, x) function at a = 10, x = 14 MathDisplay.WriteLine(@"7. Compute the lower regularized gamma(a, x) function at a = 10, x = 14"); MathDisplay.WriteLine(SpecialFunctions.GammaLowerRegularized(10, 14).ToString("N")); MathDisplay.WriteLine(); // 8. Compute the lower regularized gamma(a, x) function at a = 10, x = 100 MathDisplay.WriteLine(@"8. Compute the lower regularized gamma(a, x) function at a = 10, x = 100"); MathDisplay.WriteLine(SpecialFunctions.GammaLowerRegularized(10, 100).ToString("N")); MathDisplay.WriteLine(); // 9. Compute the upper regularized gamma(a, x) function at a = 10, x = 0 MathDisplay.WriteLine(@"9. Compute the upper regularized gamma(a, x) function at a = 10, x = 0"); MathDisplay.WriteLine(SpecialFunctions.GammaUpperRegularized(10, 0).ToString("N")); MathDisplay.WriteLine(); // 10. Compute the upper regularized gamma(a, x) function at a = 10, x = 10 MathDisplay.WriteLine(@"10. Compute the upper regularized gamma(a, x) function at a = 10, x = 100"); MathDisplay.WriteLine(SpecialFunctions.GammaUpperRegularized(10, 10).ToString("N")); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Numerical stability</b>"); // 1. Compute numerically stable exponential of 10 minus one MathDisplay.WriteLine(@"1. Compute numerically stable exponential of 4.2876 minus one"); MathDisplay.WriteLine(SpecialFunctions.ExponentialMinusOne(4.2876).ToString()); MathDisplay.WriteLine(); // 2. Compute regular System.Math exponential of 15.28 minus one MathDisplay.WriteLine(@"2. Compute regular System.Math exponential of 4.2876 minus one "); MathDisplay.WriteLine((Math.Exp(4.2876) - 1).ToString()); MathDisplay.WriteLine(); // 3. Compute numerically stable hypotenuse of a right angle triangle with a = 5, b = 3 MathDisplay.WriteLine(@"3. Compute numerically stable hypotenuse of a right angle triangle with a = 5, b = 3"); MathDisplay.WriteLine(SpecialFunctions.Hypotenuse(5, 3).ToString()); MathDisplay.WriteLine(); }