// Format of the dynamic block header: // 5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286) // 5 Bits: HDIST, # of Distance codes - 1 (1 - 32) // 4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19) // // (HCLEN + 4) x 3 bits: code lengths for the code length // alphabet given just above, in the order: 16, 17, 18, // 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 // // These code lengths are interpreted as 3-bit integers // (0-7); as above, a code length of 0 means the // corresponding symbol (literal/length or distance code // length) is not used. // // HLIT + 257 code lengths for the literal/length alphabet, // encoded using the code length Huffman code // // HDIST + 1 code lengths for the distance alphabet, // encoded using the code length Huffman code // // The code length repeat codes can cross from HLIT + 257 to the // HDIST + 1 code lengths. In other words, all code lengths form // a single sequence of HLIT + HDIST + 258 values. bool DecodeDynamicBlockHeader() { switch (state) { case InflaterState.ReadingNumLitCodes: literalLengthCodeCount = input.GetBits(5); if (literalLengthCodeCount < 0) { return(false); } literalLengthCodeCount += 257; state = InflaterState.ReadingNumDistCodes; goto case InflaterState.ReadingNumDistCodes; case InflaterState.ReadingNumDistCodes: distanceCodeCount = input.GetBits(5); if (distanceCodeCount < 0) { return(false); } distanceCodeCount += 1; state = InflaterState.ReadingNumCodeLengthCodes; goto case InflaterState.ReadingNumCodeLengthCodes; case InflaterState.ReadingNumCodeLengthCodes: codeLengthCodeCount = input.GetBits(4); if (codeLengthCodeCount < 0) { return(false); } codeLengthCodeCount += 4; loopCounter = 0; state = InflaterState.ReadingCodeLengthCodes; goto case InflaterState.ReadingCodeLengthCodes; case InflaterState.ReadingCodeLengthCodes: while (loopCounter < codeLengthCodeCount) { int bits = input.GetBits(3); if (bits < 0) { return(false); } codeLengthTreeCodeLength[codeOrder[loopCounter]] = (byte)bits; ++loopCounter; } for (int i = codeLengthCodeCount; i < codeOrder.Length; i++) { codeLengthTreeCodeLength[codeOrder[i]] = 0; } // create huffman tree for code length codeLengthTree = new HuffmanTree(codeLengthTreeCodeLength); codeArraySize = literalLengthCodeCount + distanceCodeCount; loopCounter = 0; // reset loop count state = InflaterState.ReadingTreeCodesBefore; goto case InflaterState.ReadingTreeCodesBefore; case InflaterState.ReadingTreeCodesBefore: case InflaterState.ReadingTreeCodesAfter: while (loopCounter < codeArraySize) { if (state == InflaterState.ReadingTreeCodesBefore) { if ((lengthCode = codeLengthTree.GetNextSymbol(input)) < 0) { return(false); } } // The alphabet for code lengths is as follows: // 0 - 15: Represent code lengths of 0 - 15 // 16: Copy the previous code length 3 - 6 times. // The next 2 bits indicate repeat length // (0 = 3, ... , 3 = 6) // Example: Codes 8, 16 (+2 bits 11), // 16 (+2 bits 10) will expand to // 12 code lengths of 8 (1 + 6 + 5) // 17: Repeat a code length of 0 for 3 - 10 times. // (3 bits of length) // 18: Repeat a code length of 0 for 11 - 138 times // (7 bits of length) if (lengthCode <= 15) { codeList[loopCounter++] = (byte)lengthCode; } else { if (!input.EnsureBitsAvailable(7)) // it doesn't matter if we require more bits here { state = InflaterState.ReadingTreeCodesAfter; return(false); } int repeatCount; if (lengthCode == 16) { if (loopCounter == 0) // can't have "prev code" on first code { throw new InvalidDataException(); } byte previousCode = codeList[loopCounter - 1]; repeatCount = input.GetBits(2) + 3; if (loopCounter + repeatCount > codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { codeList[loopCounter++] = previousCode; } } else if (lengthCode == 17) { repeatCount = input.GetBits(3) + 3; if (loopCounter + repeatCount > codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { codeList[loopCounter++] = 0; } } else // code == 18 { repeatCount = input.GetBits(7) + 11; if (loopCounter + repeatCount > codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { codeList[loopCounter++] = 0; } } } state = InflaterState.ReadingTreeCodesBefore; // we want to read the next code. } break; default: Debug.Assert(false, "check why we are here!"); throw new InvalidDataException(SR.GetString(SR.UnknownState)); } byte[] literalTreeCodeLength = new byte[HuffmanTree.MaxLiteralTreeElements]; byte[] distanceTreeCodeLength = new byte[HuffmanTree.MaxDistTreeElements]; // Create literal and distance tables Array.Copy(codeList, literalTreeCodeLength, literalLengthCodeCount); Array.Copy(codeList, literalLengthCodeCount, distanceTreeCodeLength, 0, distanceCodeCount); // Make sure there is an end-of-block code, otherwise how could we ever end? if (literalTreeCodeLength[HuffmanTree.EndOfBlockCode] == 0) { throw new InvalidDataException(); } literalLengthTree = new HuffmanTree(literalTreeCodeLength); distanceTree = new HuffmanTree(distanceTreeCodeLength); state = InflaterState.DecodeTop; return(true); }
static HuffmanTree() { // construct the static literal tree and distance tree staticLiteralLengthTree = new HuffmanTree(GetStaticLiteralTreeLength()); staticDistanceTree = new HuffmanTree(GetStaticDistanceTreeLength()); }
//Each block of compressed data begins with 3 header bits // containing the following data: // first bit BFINAL // next 2 bits BTYPE // Note that the header bits do not necessarily begin on a byte // boundary, since a block does not necessarily occupy an integral // number of bytes. // BFINAL is set if and only if this is the last block of the data // set. // BTYPE specifies how the data are compressed, as follows: // 00 - no compression // 01 - compressed with fixed Huffman codes // 10 - compressed with dynamic Huffman codes // 11 - reserved (error) // The only difference between the two compressed cases is how the // Huffman codes for the literal/length and distance alphabets are // defined. // // This function returns true for success (end of block or output window is full,) // false if we are short of input // private bool Decode() { bool eob = false; bool result = false; if (Finished()) { return(true); } if (hasFormatReader) { if (state == InflaterState.ReadingHeader) { if (!formatReader.ReadHeader(input)) { return(false); } state = InflaterState.ReadingBFinal; } else if (state == InflaterState.StartReadingFooter || state == InflaterState.ReadingFooter) { if (!formatReader.ReadFooter(input)) { return(false); } state = InflaterState.VerifyingFooter; return(true); } } if (state == InflaterState.ReadingBFinal) // reading bfinal bit // Need 1 bit { if (!input.EnsureBitsAvailable(1)) { return(false); } bfinal = input.GetBits(1); state = InflaterState.ReadingBType; } if (state == InflaterState.ReadingBType) { // Need 2 bits if (!input.EnsureBitsAvailable(2)) { state = InflaterState.ReadingBType; return(false); } blockType = (BlockType)input.GetBits(2); if (blockType == BlockType.Dynamic) { //Debug.WriteLineIf(CompressionTracingSwitch.Informational, "Decoding Dynamic Block", "Compression"); state = InflaterState.ReadingNumLitCodes; } else if (blockType == BlockType.Static) { //Debug.WriteLineIf(CompressionTracingSwitch.Informational, "Decoding Static Block", "Compression"); literalLengthTree = HuffmanTree.StaticLiteralLengthTree; distanceTree = HuffmanTree.StaticDistanceTree; state = InflaterState.DecodeTop; } else if (blockType == BlockType.Uncompressed) { //Debug.WriteLineIf(CompressionTracingSwitch.Informational, "Decoding UnCompressed Block", "Compression"); state = InflaterState.UncompressedAligning; } else { throw new InvalidDataException(SR.GetString(SR.UnknownBlockType)); } } if (blockType == BlockType.Dynamic) { if (state < InflaterState.DecodeTop) // we are reading the header { result = DecodeDynamicBlockHeader(); } else { result = DecodeBlock(out eob); // this can returns true when output is full } } else if (blockType == BlockType.Static) { result = DecodeBlock(out eob); } else if (blockType == BlockType.Uncompressed) { result = DecodeUncompressedBlock(out eob); } else { throw new InvalidDataException(SR.GetString(SR.UnknownBlockType)); } // // If we reached the end of the block and the block we were decoding had // bfinal=1 (final block) // if (eob && (bfinal != 0)) { if (hasFormatReader) { state = InflaterState.StartReadingFooter; } else { state = InflaterState.Done; } } return(result); }