示例#1
0
        /// <summary>
        /// Find the intersection of a ray with the terrain.
        /// </summary>
        /// <param name="p1">Cartesian coordinate of starting point</param>
        /// <param name="p2">Cartesian coordinate of end point</param>
        /// <param name="samplingPrecision">Sample length in meter</param>
        /// <param name="resultPrecision">Final sampling length in meter</param>
        /// <param name="latitude">Out : intersection latitude</param>
        /// <param name="longitude">Out : intersection longitude</param>
        /// <param name="world">Current world</param>
        /// <returns>NaN if no intersection found</returns>
        public static void RayIntersectionWithTerrain(
            Point3d p1,
            Point3d p2,
            double samplingPrecision,
            double resultPrecision,
            out Angle latitude,
            out Angle longitude,
            World world)
        {
            // Check for sphere intersection first
            // Note : checks for world radius + highest possible elevation
            float  vertEx       = World.Settings.VerticalExaggeration;
            double maxRadius    = world.EquatorialRadius + 9000 * vertEx; // Max altitude for earth - should be dependant on world
            double a            = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y) + (p2.Z - p1.Z) * (p2.Z - p1.Z);
            double b            = 2.0 * ((p2.X - p1.X) * (p1.X) + (p2.Y - p1.Y) * (p1.Y) + (p2.Z - p1.Z) * (p1.Z));
            double c            = p1.X * p1.X + p1.Y * p1.Y + p1.Z * p1.Z - maxRadius * maxRadius;
            double discriminant = b * b - 4 * a * c;

            if (discriminant <= 0)
            {
                // No intersection with sphere
                latitude  = Angle.NaN;
                longitude = Angle.NaN;
                return;
            }
            // Factor to intersection
            // Note : if t1 > 0 intersection is forward, < 0 is behind us
            double  t1       = ((-1.0) * b - Math.Sqrt(discriminant)) / (2 * a);
            Point3d p1LatLon = MathEngine.CartesianToSphericalD(p1.X, p1.Y, p1.Z);

            if (t1 > 0 && p1LatLon.X > maxRadius)
            {
                // Looking from above max altitude : move p1 forward to intersection with max alt sphere
                p1 = new Point3d(p1.X + t1 * (p2.X - p1.X), p1.Y + t1 * (p2.Y - p1.Y), p1.Z + t1 * (p2.Z - p1.Z));
            }

            // Ray sample
            Vector3 sample       = new Vector3((float)(p2.X - p1.X), (float)(p2.Y - p1.Y), (float)(p2.Z - p1.Z));
            double  maxLength    = sample.Length();   // Max length for ray tracing
            double  sampleLength = samplingPrecision; // Sampling steps length

            sample.Normalize();
            sample.Scale((float)sampleLength);

            // Casting
            Point3d ray       = p1;
            double  rayLength = 0;

            while (rayLength < maxLength)
            {
                Point3d rayLatLon = MathEngine.CartesianToSphericalD(ray.X, ray.Y, ray.Z);
                // Altitude at ray position
                double rayAlt = rayLatLon.X - world.EquatorialRadius;
                // Altitude at terrain position - from cached data (no download)
                double terrainAlt = world.TerrainAccessor.GetCachedElevationAt(MathEngine.RadiansToDegrees(rayLatLon.Y), MathEngine.RadiansToDegrees(rayLatLon.Z)); // best loaded data
                if (double.IsNaN(terrainAlt))
                {
                    terrainAlt = 0;
                }
                terrainAlt *= vertEx;
                if (terrainAlt > rayAlt)
                {
                    // Intersection found
                    if (sampleLength > resultPrecision)
                    {
                        // Go back one step
                        ray.X     -= sample.X;
                        ray.Y     -= sample.Y;
                        ray.Z     -= sample.Z;
                        rayLength -= sampleLength;
                        // and refine sampling
                        sampleLength /= 10;
                        sample.Normalize();
                        sample.Scale((float)sampleLength);
                    }
                    else
                    {
                        // return location
                        latitude  = Angle.FromRadians(rayLatLon.Y);
                        longitude = Angle.FromRadians(rayLatLon.Z);
                        return;
                    }
                }
                // Move forward
                ray.X     += sample.X;
                ray.Y     += sample.Y;
                ray.Z     += sample.Z;
                rayLength += sampleLength;
            }
            // No intersection with terrain found
            latitude  = Angle.NaN;
            longitude = Angle.NaN;
        }
示例#2
0
        public static Point3d GetGeocentricPosition(System.DateTime utcDateTime)
        {
            if (World.Settings.SunSynchedWithTime)
            {
                // Sun synched with time and date
                double JD = getJulianDay(utcDateTime);
                double T  = (JD - 2451545.0) / 36525; // number of Julian centuries since Jan 1, 2000, 12 UT

                double k  = Math.PI / 180.0;
                double M  = 357.52910 + 35999.05030 * T - 0.0001559 * T * T - 0.00000048 * T * T * T; // mean anomaly, degree
                double L0 = 280.46645 + 36000.76983 * T + 0.0003032 * T * T;                          // mean longitude, degree
                double DL = (1.914600 - 0.004817 * T - 0.000014 * T * T) * Math.Sin(k * M) + (0.019993 - 0.000101 * T) * Math.Sin(k * 2 * M) + 0.000290 * Math.Sin(k * 3 * M);
                double L  = L0 + DL;                                                                  // true longitude, degree
                L = L % 360;
                //		obliquity eps of ecliptic:
                double eps = 23.0 + 26.0 / 60.0 + 21.448 / 3600.0 - (46.8150 * T + 0.00059 * T * T - 0.001813 * T * T * T) / 3600;

                double X = Math.Cos(k * L);
                double Y = Math.Cos(k * eps) * Math.Sin(k * L);
                double Z = Math.Sin(k * eps) * Math.Sin(k * L);

                double R = Math.Sqrt(1.0 - Z * Z);

                double dec = (180 / Math.PI) * Math.Atan(Z / R);                                                                  // in degrees
                double RA  = (24 / Math.PI) * Math.Atan(Y / (X + R));                                                             // in hours

                double theta0 = 280.46061837 + 360.98564736629 * (JD - 2451545.0) + 0.000387933 * T * T - T * T * T / 38710000.0; // Greenwich Sidereal Time

                theta0 = theta0 % 360;
                RA    *= 15; // convert from hours to degrees
                double tau = theta0 - RA;

                Point3d pos = MathEngine.SphericalToCartesianD(
                    Angle.FromDegrees(-dec),
                    Angle.FromDegrees(-(tau - 180)),
                    1);

                return(pos);
            }
            else
            {
                // Fixed sun heading and elevation
                double  worldRadius = 6378137;  // Earth meter
                Vector3 position    = MathEngine.SphericalToCartesian(World.Settings.CameraLatitude, World.Settings.CameraLongitude, worldRadius);
                return(GetGeocentricPosition(position, Angle.FromRadians(World.Settings.SunHeading), Angle.FromRadians(World.Settings.SunElevation), World.Settings.SunDistance));
            }
        }
示例#3
0
 /// <summary>
 /// Returns the absolute value of the specified angle
 /// </summary>
 public static Angle Abs(Angle a)
 {
     return(Angle.FromRadians(Math.Abs(a.Radians)));
 }
示例#4
0
 public static Angle operator /(Angle a, double divisor)
 {
     return(Angle.FromRadians(a.Radians / divisor));
 }
示例#5
0
 public static Angle operator *(double times, Angle a)
 {
     return(Angle.FromRadians(a.Radians * times));
 }
示例#6
0
        public static Angle operator -(Angle a, Angle b)
        {
            double res = a.Radians - b.Radians;

            return(Angle.FromRadians(res));
        }