/// <summary> /// Run NBN training and its test - this is the first version /// </summary> /// <param name="trials">int - number of learning trials</param> /// <returns>LearnResult</returns>R private LearnResult RunFirstVersion(int trials) { backupSettings = new NeuralNetworkSettings(); backupSettings.MaxError = settings.MaxError; backupSettings.MaxIterations = settings.MaxIterations; backupSettings.MU = settings.MU; backupSettings.MUH = settings.MUH; backupSettings.MUL = settings.MUL; backupSettings.Scale = settings.Scale; Trials = trials; LearnResult result = new LearnResult(); result.Filename = Filename; if (MatLabCompareDataFolder.Length > 0) { result.Filename = string.Format("{0}\\{1}.dat", MatLabCompareDataFolder, Path.GetFileNameWithoutExtension(Directory.GetFiles(MatLabCompareDataFolder, "*.dat")[0])); } if (!loadInputData(Filename)) { updateErrorNBN("Dane nie zostały wczytane."); return(result); } if (OnDebug != null) { debug("Data loaded from file: " + Filename); } var tmp = new System.Collections.Generic.List <int>(); tmp.Add(inputLearn.Cols); //setting number of hidden neurons for (int i = 0; i < Handle; i++) { tmp.Add(1); } tmp.Add(1); var vh = new VectorHorizontal(tmp.Count); for (int i = 0; i < vh.Length; i++) { vh[i] = tmp[i]; } switch (NBN_Topography) { case 0: { topo = Topography.Generate(TopographyType.BMLP, vh); } break; case 1: { topo = Topography.Generate(TopographyType.MLP, vh); } break; } result.Topo = topo.Data[0]; if (OnDebug != null) { debug(topo.ToString()); } if (topo == null) { updateErrorNBN("Topologia sieci nie została utworzona."); return(result); } info = this.checkInputs(ref inputLearn, ref outputLearn, ref topo, out indexes);//here are set indexes result.TopoIndex = indexes.Data[0]; result.Info = info; if (OnDebug != null) { debug(indexes.ToString()); debug(info.ToString()); } Activation act = new Activation(info.nn); act.FillWithNumber(NBN_Activation); act.setValue(info.nn - 1, 0); result.ActivationFunction = act.Data[0]; Gain gain = new Gain(info.nn); gain.FillWithNumber(NBN_Gain); result.GainValue = gain.Data[0]; result.Settings = this.settings; for (trial = 0; trial < trials; trial++) { Weights initialWeights = new Weights(info.nw); if (MatLabCompareDataFolder.Length > 0) { initialWeights = MatrixMB.Load(string.Format("{0}\\poczatkowe_wagi_proba_{1}.txt", MatLabCompareDataFolder, trial + 1)).ToWeights(); } else { initialWeights = Weights.Generate(info.nw); } if (IsResearchMode) { string initialWeightsFile = String.Format("{0}\\{1}{2}_initial_weights.dat", _reasearch_folder, trial, Path.GetFileNameWithoutExtension(result.Filename)); initialWeights.Store(initialWeightsFile); } initialWeights.Name = "Initial"; if (OnDebug != null) { debug(String.Format("\r\nTrial {0} from {1}\r\n", trial + 1, trials)); debug(initialWeights.ToString()); } settings = null; settings = NeuralNetworkSettings.Default(); settings.MaxError = backupSettings.MaxError; settings.MaxIterations = backupSettings.MaxIterations; settings.MU = backupSettings.MU; settings.MUH = backupSettings.MUH; settings.MUL = backupSettings.MUL; settings.Scale = backupSettings.Scale; I = MatrixMB.Eye(info.nw); tic();//learn time measure start var tr = Train(ref this.settings, ref this.info, ref this.inputLearn, ref this.outputLearn, ref this.topo, initialWeights, ref act, ref gain, ref indexes); String LearnExecutionTime = toc(); //learn time measure stop LearnTimeList = time.ElapsedTicks; //learn time measure save result.Add(tr.weights.Data[0], SSE.ToDoubleArray(), RMSE.ToDoubleArray()); result.LearnRMSE = (double)RMSE[RMSE.Count]; LearnRmseList = LastRMSE; if (OnDebug != null) { debug(tr.weights.ToString()); debug("\r\nLearn execution time: " + LearnExecutionTime + "(hours:minutes:seconds:miliseconds)\r\n"); debug("\r\nLearn SSE: " + tr.sse.ToString() + "\r\n"); debug("\r\nLearn RMSE: " + result.LearnRMSE.ToString() + "\r\n"); } updateError(result.LearnRMSE); NetworkInfo infoTest = info.Copy(); infoTest.np = inputTest.Rows; tic(); error.CalculateError(ref infoTest, ref inputTest, ref outputTest, ref topo, tr.weights, ref act, ref gain, ref indexes); var TestExecutionTime = toc(); TestTimeList = time.ElapsedTicks; result.TestRMSE = Math.Sqrt(error.Error / infoTest.np); TestRmseList = result.TestRMSE; result.TestingRmseList.Add(result.TestRMSE); if (OnDebug != null) { debug("\r\nTest execution time: " + TestExecutionTime + "(hours:minutes:seconds:miliseconds)\r\n"); debug("\r\nTest SSE: " + error.Error.ToString() + "\r\n"); debug("\r\nTest RMSE: " + result.TestRMSE.ToString() + "\r\n"); } //if (result.LearnRMSE < Threshold) IsTrainOK++; if (result.SSE[trial][result.SSE[trial].Length - 1] < Threshold) { IsTrainOK++; } } result.LearnRMSE = AverageLearnRMSE; result.TestRMSE = AverageTestRMSE; result.setStatisticsData(LearnRMSE, TestRMSE, LearnTime, TestTime, Trials); result.SuccessRate = (double)IsTrainOK / Trials; if (IsResearchMode)//save research { try { string filename = extractionFolder + "\\research result.pdf"; PDFGenerate data = new PDFGenerate(); data.Filename = filename; data.Result = result; data.ChartFilename = GeneratePlot(result.RMSE, Path.GetFileNameWithoutExtension(result.Filename)); HistoryPDF pdf = new HistoryPDF(data.Result, data.ChartFilename, true); pdf.Save(data.Filename); } catch { } } return(result); }
/// <summary> /// Run NBN training and its test - this is the first version /// </summary> /// <param name="trials">int - number of learning trials</param> /// <returns>LearnResult</returns>R private LearnResult RunFirstVersion(int trials) { backupSettings = new NeuralNetworkSettings(); backupSettings.MaxError = settings.MaxError; backupSettings.MaxIterations = settings.MaxIterations; backupSettings.MU = settings.MU; backupSettings.MUH = settings.MUH; backupSettings.MUL = settings.MUL; backupSettings.Scale = settings.Scale; Trials = trials; LearnResult result = new LearnResult(); result.Filename = Filename; if (MatLabCompareDataFolder.Length > 0) { result.Filename = string.Format("{0}\\{1}.dat", MatLabCompareDataFolder, Path.GetFileNameWithoutExtension(Directory.GetFiles(MatLabCompareDataFolder, "*.dat")[0])); } if (!loadInputData(Filename)) { updateErrorNBN("Dane nie zostały wczytane."); return result; } if (OnDebug != null) debug("Data loaded from file: " + Filename); var tmp = new System.Collections.Generic.List<int>(); tmp.Add(inputLearn.Cols); //setting number of hidden neurons for (int i = 0; i < Handle; i++) { tmp.Add(1); } tmp.Add(1); var vh = new VectorHorizontal(tmp.Count); for (int i = 0; i < vh.Length; i++) { vh[i] = tmp[i]; } switch (NBN_Topography) { case 0: { topo = Topography.Generate(TopographyType.BMLP, vh); } break; case 1: { topo = Topography.Generate(TopographyType.MLP, vh); } break; } result.Topo = topo.Data[0]; if (OnDebug != null) debug(topo.ToString()); if (topo == null) { updateErrorNBN("Topologia sieci nie została utworzona."); return result; } info = this.checkInputs(ref inputLearn, ref outputLearn, ref topo, out indexes);//here are set indexes result.TopoIndex = indexes.Data[0]; result.Info = info; if (OnDebug != null) { debug(indexes.ToString()); debug(info.ToString()); } Activation act = new Activation(info.nn); act.FillWithNumber(NBN_Activation); act.setValue(info.nn - 1, 0); result.ActivationFunction = act.Data[0]; Gain gain = new Gain(info.nn); gain.FillWithNumber(NBN_Gain); result.GainValue = gain.Data[0]; result.Settings = this.settings; for (trial = 0; trial < trials; trial++) { Weights initialWeights = new Weights(info.nw); if (MatLabCompareDataFolder.Length > 0) { initialWeights = MatrixMB.Load(string.Format("{0}\\poczatkowe_wagi_proba_{1}.txt", MatLabCompareDataFolder, trial + 1)).ToWeights(); } else { initialWeights = Weights.Generate(info.nw); } if (IsResearchMode) { string initialWeightsFile = String.Format("{0}\\{1}{2}_initial_weights.dat", _reasearch_folder, trial, Path.GetFileNameWithoutExtension(result.Filename)); initialWeights.Store(initialWeightsFile); } initialWeights.Name = "Initial"; if (OnDebug != null) { debug(String.Format("\r\nTrial {0} from {1}\r\n", trial + 1, trials)); debug(initialWeights.ToString()); } settings = null; settings = NeuralNetworkSettings.Default(); settings.MaxError = backupSettings.MaxError; settings.MaxIterations = backupSettings.MaxIterations; settings.MU = backupSettings.MU; settings.MUH = backupSettings.MUH; settings.MUL = backupSettings.MUL; settings.Scale = backupSettings.Scale; I = MatrixMB.Eye(info.nw); tic();//learn time measure start var tr = Train(ref this.settings, ref this.info, ref this.inputLearn, ref this.outputLearn, ref this.topo, initialWeights, ref act, ref gain, ref indexes); String LearnExecutionTime = toc();//learn time measure stop LearnTimeList = time.ElapsedTicks;//learn time measure save result.Add(tr.weights.Data[0], SSE.ToDoubleArray(), RMSE.ToDoubleArray()); result.LearnRMSE = (double)RMSE[RMSE.Count]; LearnRmseList = LastRMSE; if (OnDebug != null) { debug(tr.weights.ToString()); debug("\r\nLearn execution time: " + LearnExecutionTime + "(hours:minutes:seconds:miliseconds)\r\n"); debug("\r\nLearn SSE: " + tr.sse.ToString() + "\r\n"); debug("\r\nLearn RMSE: " + result.LearnRMSE.ToString() + "\r\n"); } updateError(result.LearnRMSE); NetworkInfo infoTest = info.Copy(); infoTest.np = inputTest.Rows; tic(); error.CalculateError(ref infoTest, ref inputTest, ref outputTest, ref topo, tr.weights, ref act, ref gain, ref indexes); var TestExecutionTime = toc(); TestTimeList = time.ElapsedTicks; result.TestRMSE = Math.Sqrt(error.Error / infoTest.np); TestRmseList = result.TestRMSE; result.TestingRmseList.Add(result.TestRMSE); if (OnDebug != null) { debug("\r\nTest execution time: " + TestExecutionTime + "(hours:minutes:seconds:miliseconds)\r\n"); debug("\r\nTest SSE: " + error.Error.ToString() + "\r\n"); debug("\r\nTest RMSE: " + result.TestRMSE.ToString() + "\r\n"); } //if (result.LearnRMSE < Threshold) IsTrainOK++; if (result.SSE[trial][result.SSE[trial].Length - 1] < Threshold) IsTrainOK++; } result.LearnRMSE = AverageLearnRMSE; result.TestRMSE = AverageTestRMSE; result.setStatisticsData(LearnRMSE, TestRMSE, LearnTime, TestTime, Trials); result.SuccessRate = (double)IsTrainOK / Trials; if (IsResearchMode)//save research { try { string filename = extractionFolder + "\\research result.pdf"; PDFGenerate data = new PDFGenerate(); data.Filename = filename; data.Result = result; data.ChartFilename = GeneratePlot(result.RMSE, Path.GetFileNameWithoutExtension(result.Filename)); HistoryPDF pdf = new HistoryPDF(data.Result, data.ChartFilename, true); pdf.Save(data.Filename); } catch { } } return result; }
public void Test___Error___Calculation___Test() { /* * * Kod testowy matlaba * function obliczanie_bledu() inp = [-1 -1;-1 1; 1 -1]; dout = [1;0;0]; topo = [3 1 2 4 1 2 3]; w = [1 1 1 1 1 1 1]; act = [2 0]; gain = [1 1]; param = [3 2 1 7 2]; iw = [1 4 8]; format long; error = calculate_error(inp,dout,topo,w,act,gain,param,iw); fprintf('Obliczanie błędu uczenia sieci\nBłąd wynosi: %.20f\n', error); %Otrzymany wynik %Obliczanie błędu uczenia sieci %Błąd wynosi: 13.83283022280404000000 end * * */ Input input = new Input(3, 2);//inp = [-1 -1;-1 1; 1 -1]; input[0, 0] = -1; input[0, 1] = -1; input[1, 0] = -1; input[1, 1] = 1; input[2, 0] = 1; input[2, 1] = -1; Output output = new Output(3, 1);//dout = [1;0;0]; output[0, 0] = 1; output[1, 0] = 0; output[2, 0] = 0; NetworkInfo info = new NetworkInfo();//param = [3 2 1 7 2]; info.ni = 2; info.nn = 2; info.no = 1; info.np = 3; info.nw = 7; VectorHorizontal vh = new VectorHorizontal(3); vh[0, 0] = 2; vh[0, 1] = 1; vh[0, 2] = 1; Topography topo = Topography.Generate(TopographyType.BMLP, vh);//topo = [3 1 2 4 1 2 3]; //w C# indeksy są od zera a nie od 1 więc wszystko o 1 w dół przestawione jest Assert.AreEqual(2, topo[0]); Assert.AreEqual(0, topo[1]); Assert.AreEqual(1, topo[2]); Assert.AreEqual(3, topo[3]); Assert.AreEqual(0, topo[4]); Assert.AreEqual(1, topo[5]); Assert.AreEqual(2, topo[6]); Weights weights = new Weights(info.nw);//w = [1 1 1 1 1 1 1]; weights.FillWithNumber(1);//załatwione Activation act = new Activation(2);//act = [2 0]; act[0] = 2; act[1] = 0; Gain gain = new Gain(2);//gain = [1 1]; gain[0] = 1; gain[1] = 1; Index iw = Index.Find(ref topo);//iw = [1 4 8]; //ta sama sytuacja, indeksy od 0 startują Assert.AreEqual(0, iw[0]); Assert.AreEqual(3, iw[1]); Assert.AreEqual(7, iw[2]); NetworkError ne = new NetworkError(); var error = ne.CalculateError(ref info, ref input, ref output, ref topo, weights, ref act, ref gain, ref iw); double errorFromMatLab = 13.83283022280404000000; Console.WriteLine("Testowanie obliczania błędu"); Console.WriteLine("Użyte dane:"); Console.WriteLine("\nDane wejściowe:"); Console.WriteLine(input.MatrixToString()); Console.WriteLine("\nDane wyjściowe:"); Console.WriteLine(output.MatrixToString()); Console.WriteLine("\nWagi;"); Console.WriteLine(weights.MatrixToString()); Console.WriteLine("\nTopologia:"); Console.WriteLine(topo.MatrixToString()); Console.WriteLine("\nIndeksy topologii:"); Console.WriteLine(iw.MatrixToString()); Console.WriteLine("\nFunkcje aktywacji:"); Console.WriteLine(act.MatrixToString()); Console.WriteLine("\nWzmocnienia (gains):"); Console.WriteLine(gain.MatrixToString()); Console.WriteLine("\nParametry (param):"); Console.WriteLine(info.ToString()); Assert.AreEqual(errorFromMatLab, error); Console.WriteLine(string.Format("{0} - wynik NBN C#",error)); Console.WriteLine(string.Format("{0} - wynik NBN w MatLabie",errorFromMatLab)); }
public void Hessian___Gradient___Calculation___Test() { int accuracy = 15; /* function obliczanie_hesjan_gradient() clear(); inp = [-1 -1;-1 1; 1 -1]; dout = [1;0;0]; topo = [3 1 2 4 1 2 3]; ww = [1 1 1 1 1 1 1]; act = [2 0]; gain = [1 1]; param = [3 2 1 7 2]; iw = [1 4 8]; format long; [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw); fprintf('Otrzymany gradient:\n'); disp(gradient); fprintf('\nOtrzymany hesjan:\n'); disp(hessian); % To jest otrzymywane % Otrzymany gradient: % -0.839948683228052 % 2.319597374905329 % 2.319597374905329 % -2.000000000000000 % 5.523188311911530 % 5.523188311911531 % 6.889667569278484 % % % Otrzymany hesjan: % Columns 1 through 6 % % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 % % Column 7 % % -0.639700008449225 % 1.279400016898449 % 1.279400016898449 % -1.523188311911530 % 3.046376623823059 % 3.046376623823059 % 3.480153950315843 end */ Input input = new Input(3, 2);//inp = [-1 -1;-1 1; 1 -1]; input[0, 0] = -1; input[0, 1] = -1; input[1, 0] = -1; input[1, 1] = 1; input[2, 0] = 1; input[2, 1] = -1; Output output = new Output(3, 1);//dout = [1;0;0]; output[0, 0] = 1; output[1, 0] = 0; output[2, 0] = 0; NetworkInfo info = new NetworkInfo();//param = [3 2 1 7 2]; info.ni = 2; info.nn = 2; info.no = 1; info.np = 3; info.nw = 7; VectorHorizontal vh = new VectorHorizontal(3); vh[0, 0] = 2; vh[0, 1] = 1; vh[0, 2] = 1; Topography topo = Topography.Generate(TopographyType.BMLP, vh);//topo = [3 1 2 4 1 2 3]; //w C# indeksy są od zera a nie od 1 więc wszystko o 1 w dół przestawione jest Assert.AreEqual(2, topo[0]); Assert.AreEqual(0, topo[1]); Assert.AreEqual(1, topo[2]); Assert.AreEqual(3, topo[3]); Assert.AreEqual(0, topo[4]); Assert.AreEqual(1, topo[5]); Assert.AreEqual(2, topo[6]); Weights weights = new Weights(info.nw);//w = [1 1 1 1 1 1 1]; weights.FillWithNumber(1);//załatwione Activation act = new Activation(2);//act = [2 0]; act[0] = 2; act[1] = 0; Gain gain = new Gain(2);//gain = [1 1]; gain[0] = 1; gain[1] = 1; Index iw = Index.Find(ref topo);//iw = [1 4 8]; //ta sama sytuacja, indeksy od 0 startują Assert.AreEqual(0, iw[0]); Assert.AreEqual(3, iw[1]); Assert.AreEqual(7, iw[2]); Console.WriteLine("Testowanie obliczania gradientu i macierzy hesjana"); Console.WriteLine("Użyte dane:"); Console.WriteLine("\nDane wejściowe:"); Console.WriteLine(input.MatrixToString()); Console.WriteLine("\nDane wyjściowe:"); Console.WriteLine(output.MatrixToString()); Console.WriteLine("\nWagi;"); Console.WriteLine(weights.MatrixToString()); Console.WriteLine("\nTopologia:"); Console.WriteLine(topo.MatrixToString()); Console.WriteLine("\nIndeksy topologii:"); Console.WriteLine(iw.MatrixToString()); Console.WriteLine("\nFunkcje aktywacji:"); Console.WriteLine(act.MatrixToString()); Console.WriteLine("\nWzmocnienia (gains):"); Console.WriteLine(gain.MatrixToString()); Console.WriteLine("\nParametry (param):"); Console.WriteLine(info.ToString()); Hessian hess = new Hessian(ref info); hess.Compute(ref info, ref input, ref output, ref topo, weights, ref act, ref gain, ref iw); var g = hess.GradientMat; var h = hess.HessianMat; Console.WriteLine("\nSprawdzanie gradientu z dokładnością do 15 miejsc po przecinku"); var matG = new double[] { -0.839948683228052, 2.319597374905329, 2.319597374905329, -2.000000000000000, 5.523188311911530, 5.523188311911531, 6.889667569278484 }; /* % Otrzymany gradient: % -0.839948683228052 % 2.319597374905329 % 2.319597374905329 % -2.000000000000000 % 5.523188311911530 % 5.523188311911531 % 6.889667569278484 */ for (int i = 0; i < matG.Length; i++) { Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", Math.Round(g[i, 0], accuracy), matG[i], Math.Round(g[i, 0], accuracy) == matG[i] ? "OK" : "źle")); } Assert.AreEqual(-0.839948683228052, Math.Round(g[0, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[1, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[2, 0], accuracy)); Assert.AreEqual(-2.000000000000000, Math.Round(g[3, 0], accuracy)); Assert.AreEqual(5.523188311911530, Math.Round(g[4, 0], accuracy)); Assert.AreEqual(5.523188311911531, Math.Round(g[5, 0], accuracy)); Assert.AreEqual(6.889667569278484, Math.Round(g[6, 0], accuracy)); Console.WriteLine("\nSprawdzanie macierzy hesjana\nPorównania z dokładnością do 15 miejsc po przecinku"); MatrixMB matH = new MatrixMB(7, 7); //col 1 matH[0, 0] = 1.058270685684809; matH[1, 0] = -0.705513790456539; matH[2, 0] = -0.705513790456539; matH[3, 0] = 2.519846049684157; matH[4, 0] = -1.679897366456105; matH[5, 0] = -1.679897366456105; matH[6, 0] = -0.639700008449225; //col 2 matH[0, 1] = -0.705513790456539; matH[1, 1] = 1.058270685684809; matH[2, 1] = 0.352756895228269; matH[3, 1] = -1.679897366456105; matH[4, 1] = 2.519846049684157; matH[5, 1] = 0.839948683228052; matH[6, 1] = 1.279400016898449; //col 3 matH[0, 2] = -0.705513790456539; matH[1, 2] = 0.352756895228269; matH[2, 2] = 1.058270685684809; matH[3, 2] = -1.679897366456105; matH[4, 2] = 0.839948683228052; matH[5, 2] = 2.519846049684157; matH[6, 2] = 1.279400016898449; //col 4 matH[0, 3] = 2.519846049684157; matH[1, 3] = -1.679897366456105; matH[2, 3] = -1.679897366456105; matH[3, 3] = 6.000000000000000; matH[4, 3] = -4.000000000000000; matH[5, 3] = -4.000000000000000; matH[6, 3] = -1.523188311911530; //col 5 matH[0, 4] = -1.679897366456105; matH[1, 4] = 2.519846049684157; matH[2, 4] = 0.839948683228052; matH[3, 4] = -4.000000000000000; matH[4, 4] = 6.000000000000000; matH[5, 4] = 2.000000000000000; matH[6, 4] = 3.046376623823059; //col 6 matH[0, 5] = -1.679897366456105; matH[1, 5] = 0.839948683228052; matH[2, 5] = 2.519846049684157; matH[3, 5] = -4.000000000000000; matH[4, 5] = 2.000000000000000; matH[5, 5] = 6.000000000000000; matH[6, 5] = 3.046376623823059; //col 7 matH[0, 6] = -0.639700008449225; matH[1, 6] = 1.279400016898449; matH[2, 6] = 1.279400016898449; matH[3, 6] = -1.523188311911530; matH[4, 6] = 3.046376623823059; matH[5, 6] = 3.046376623823059; matH[6, 6] = 3.480153950315843; for (int k = 0; k < h.Cols; k++) { Console.WriteLine(string.Format("Kolumna {0}", k + 1)); for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", dh, dmh, dh == dmh ? "OK" : "źle")); } Console.WriteLine(""); } for (int k = 0; k < h.Cols; k++) { for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Assert.AreEqual(dmh, dh); } } /* % Otrzymany hesjan: % Columns 1 through 6 % % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 % % Column 7 % % -0.639700008449225 % 1.279400016898449 % 1.279400016898449 % -1.523188311911530 % 3.046376623823059 % 3.046376623823059 % 3.480153950315843 */ }