private void ExecuteRecipe(double k, Vessel_resources resources, double elapsed_s, Resource_recipe recipe) { // only execute processes if necessary if (Math.Abs(k) < double.Epsilon) { return; } foreach (var p in inputs) { recipe.Input(p.Key, p.Value * k * elapsed_s); } foreach (var p in outputs) { recipe.Output(p.Key, p.Value * k * elapsed_s, dump.Check(p.Key)); } foreach (var p in cures) { // TODO this assumes that the cure modifies always put the resource first // works: modifier = _SickbayRDU,zerog works // fails: modifier = zerog,_SickbayRDU recipe.Cure(p.Key, p.Value * k * elapsed_s, modifiers[0]); } resources.Transform(recipe); }
static void ProcessConverter(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleResourceConverter converter, Vessel_resources resources, double elapsed_s) { // note: ignore stock temperature mechanic of converters // note: ignore auto shutdown // note: non-mandatory resources 'dynamically scale the ratios', that is exactly what mandatory resources do too (DERP ALERT) // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation) // if active if (Lib.Proto.GetBool(m, "IsActivated")) { // determine if vessel is full of all output resources // note: comparing against previous amount bool full = true; foreach (var or in converter.outputList) { Resource_info res = resources.Info(v, or.ResourceName); full &= (res.level >= converter.FillAmount - double.Epsilon); } // if not full if (!full) { // deduce crew bonus int exp_level = -1; if (converter.UseSpecialistBonus) { foreach (ProtoCrewMember c in Lib.CrewList(v)) { if (c.experienceTrait.Effects.Find(k => k.Name == converter.ExperienceEffect) != null) { exp_level = Math.Max(exp_level, c.experienceLevel); } } } double exp_bonus = exp_level < 0 ? converter.EfficiencyBonus * converter.SpecialistBonusBase : converter.EfficiencyBonus * (converter.SpecialistBonusBase + (converter.SpecialistEfficiencyFactor * (exp_level + 1))); // create and commit recipe Resource_recipe recipe = new Resource_recipe(p); foreach (var ir in converter.inputList) { recipe.Input(ir.ResourceName, ir.Ratio * exp_bonus * elapsed_s); } foreach (var or in converter.outputList) { recipe.Output(or.ResourceName, or.Ratio * exp_bonus * elapsed_s, or.DumpExcess); } resources.Transform(recipe); } // undo stock behavior by forcing last_update_time to now Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime()); } }
private static void ResourceUpdate(Vessel v, Harvester harvester, double min_abundance, double elapsed_s) { double abundance = SampleAbundance(v, harvester); if (abundance > min_abundance) { Resource_recipe recipe = new Resource_recipe(); recipe.Input("ElectricCharge", harvester.ec_rate * elapsed_s); recipe.Output(harvester.resource, harvester.rate * (abundance/harvester.abundance_rate) * elapsed_s, false); ResourceCache.Transform(v, recipe); } }
static void ProcessGenerator(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleGenerator generator, Vessel_resources resources, double elapsed_s) { // if active if (Lib.Proto.GetBool(m, "generatorIsActive")) { // create and commit recipe Resource_recipe recipe = new Resource_recipe(p); foreach (ModuleResource ir in generator.resHandler.inputResources) { recipe.Input(ir.name, ir.rate * elapsed_s); } foreach (ModuleResource or in generator.resHandler.outputResources) { recipe.Output(or.name, or.rate * elapsed_s, true); } resources.Transform(recipe); } }
private static void ResourceUpdate(Vessel v, Harvester harvester, double min_abundance, double elapsed_s) { double abundance = SampleAbundance(v, harvester); if (abundance > min_abundance) { double rate = harvester.rate; // Bonus(..., -2): a level 0 engineer will alreaday add 2 bonus points jsut because he's there, // regardless of level. efficiency will raise further with higher levels. int bonus = engineer_cs.Bonus(v, -2); double crew_gain = 1 + bonus * Settings.HarvesterCrewLevelBonus; crew_gain = Lib.Clamp(crew_gain, 1, Settings.MaxHarvesterBonus); rate *= crew_gain; Resource_recipe recipe = new Resource_recipe(harvester.part); recipe.Input("ElectricCharge", harvester.ec_rate * elapsed_s); recipe.Output(harvester.resource, harvester.rate * (abundance/harvester.abundance_rate) * elapsed_s, false); ResourceCache.Transform(v, recipe); } }
public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s) { // evaluate modifiers double k = Modifiers.Evaluate(v, vi, resources, modifiers); // only execute processes if necessary if (k > double.Epsilon) { // prepare recipe Resource_recipe recipe = new Resource_recipe(); foreach (var p in inputs) { recipe.Input(p.Key, p.Value * k * elapsed_s); } foreach (var p in outputs) { recipe.Output(p.Key, p.Value * k * elapsed_s, dump.Check(p.Key)); } resources.Transform(recipe); } }
public static void BackgroundUpdate(Vessel v, ProtoPartModuleSnapshot m, Greenhouse g, Vessel_info vi, Vessel_resources resources, double elapsed_s) { // get protomodule data bool active = Lib.Proto.GetBool(m, "active"); double growth = Lib.Proto.GetDouble(m, "growth"); // if enabled and not ready for harvest if (active && growth < 0.99) { // get resource handler Resource_info ec = resources.Info(v, "ElectricCharge"); // calculate natural and artificial lighting double natural = vi.solar_flux; double artificial = Math.Max(g.light_tolerance - natural, 0.0); // consume EC for the lamps, scaled by artificial light intensity if (artificial > double.Epsilon) { ec.Consume(g.ec_rate * (artificial / g.light_tolerance) * elapsed_s, "greenhouse"); } // reset artificial lighting if there is no ec left // note: comparing against amount in previous simulation step if (ec.amount <= double.Epsilon) { artificial = 0.0; } // execute recipe Resource_recipe recipe = new Resource_recipe(g.part, "greenhouse"); foreach (ModuleResource input in g.resHandler.inputResources) //recipe.Input(input.name, input.rate * elapsed_s); { // WasteAtmosphere is primary combined input if (g.WACO2 && input.name == "WasteAtmosphere") { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * elapsed_s, "CarbonDioxide"); } // CarbonDioxide is secondary combined input else if (g.WACO2 && input.name == "CarbonDioxide") { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * elapsed_s, ""); } // if atmosphere is breathable disable WasteAtmosphere / CO2 else if (!g.WACO2 && (input.name == "CarbonDioxide" || input.name == "WasteAtmosphere")) { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate, ""); } else { recipe.Input(input.name, input.rate * elapsed_s); } } foreach (ModuleResource output in g.resHandler.outputResources) { // if atmosphere is breathable disable Oxygen if (output.name == "Oxygen") { recipe.Output(output.name, vi.breathable ? 0.0 : output.rate * elapsed_s, true); } else { recipe.Output(output.name, output.rate * elapsed_s, true); } } resources.Transform(recipe); // determine environment conditions bool lighting = natural + artificial >= g.light_tolerance; bool pressure = g.pressure_tolerance <= double.Epsilon || vi.pressure >= g.pressure_tolerance; bool radiation = g.radiation_tolerance <= double.Epsilon || vi.radiation * (1.0 - vi.shielding) < g.radiation_tolerance; // determine inputs conditions // note: comparing against amounts in previous simulation step bool inputs = true; string missing_res = string.Empty; bool dis_WACO2 = false; foreach (ModuleResource input in g.resHandler.inputResources) { // combine WasteAtmosphere and CO2 if both exist if (input.name == "WasteAtmosphere" || input.name == "CarbonDioxide") { if (dis_WACO2 || vi.breathable) { continue; // skip if already checked or atmosphere is breathable } if (g.WACO2) { if (resources.Info(v, "WasteAtmosphere").amount <= double.Epsilon && resources.Info(v, "CarbonDioxide").amount <= double.Epsilon) { inputs = false; missing_res = "CarbonDioxide"; break; } dis_WACO2 = true; continue; } } if (resources.Info(v, input.name).amount <= double.Epsilon) { inputs = false; missing_res = input.name; break; } } // if growing if (lighting && pressure && radiation && inputs) { // increase growth growth += g.crop_rate * elapsed_s; growth = Math.Min(growth, 1.0); // notify the user when crop can be harvested if (growth >= 0.99) { Message.Post(Lib.BuildString("On <b>", v.vesselName, "</b> the crop is ready to be harvested")); growth = 1.0; } } // update time-to-harvest double tta = (1.0 - growth) / g.crop_rate; // update issues string issue = !inputs?Lib.BuildString("missing ", missing_res) : !lighting ? "insufficient lighting" : !pressure ? "insufficient pressure" : !radiation ? "excessive radiation" : string.Empty; // update protomodule data Lib.Proto.Set(m, "natural", natural); Lib.Proto.Set(m, "artificial", artificial); Lib.Proto.Set(m, "tta", tta); Lib.Proto.Set(m, "issue", issue); Lib.Proto.Set(m, "growth", growth); } }
public void FixedUpdate() { // do nothing in the editor if (Lib.IsEditor()) { return; } // if enabled and not ready for harvest if (active && growth < 0.99) { // get vessel info from the cache // - if the vessel is not valid (eg: flagged as debris) then solar flux will be 0 and landed false (but that's okay) Vessel_info vi = Cache.VesselInfo(vessel); // get resource cache Vessel_resources resources = ResourceCache.Get(vessel); Resource_info ec = resources.Info(vessel, "ElectricCharge"); // deal with corner cases when greenhouse is assembled using KIS if (double.IsNaN(growth) || double.IsInfinity(growth)) { growth = 0.0; } // calculate natural and artificial lighting natural = vi.solar_flux; artificial = Math.Max(light_tolerance - natural, 0.0); // consume EC for the lamps, scaled by artificial light intensity if (artificial > double.Epsilon) { ec.Consume(ec_rate * (artificial / light_tolerance) * Kerbalism.elapsed_s, "greenhouse"); } // reset artificial lighting if there is no ec left // - comparing against amount in previous simulation step if (ec.amount <= double.Epsilon) { artificial = 0.0; } // execute recipe Resource_recipe recipe = new Resource_recipe(part, "greenhouse"); foreach (ModuleResource input in resHandler.inputResources) { // WasteAtmosphere is primary combined input if (WACO2 && input.name == "WasteAtmosphere") { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * Kerbalism.elapsed_s, "CarbonDioxide"); } // CarbonDioxide is secondary combined input else if (WACO2 && input.name == "CarbonDioxide") { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * Kerbalism.elapsed_s, ""); } // if atmosphere is breathable disable WasteAtmosphere / CO2 else if (!WACO2 && (input.name == "CarbonDioxide" || input.name == "WasteAtmosphere")) { recipe.Input(input.name, vi.breathable ? 0.0 : input.rate, ""); } else { recipe.Input(input.name, input.rate * Kerbalism.elapsed_s); } } foreach (ModuleResource output in resHandler.outputResources) { // if atmosphere is breathable disable Oxygen if (output.name == "Oxygen") { recipe.Output(output.name, vi.breathable ? 0.0 : output.rate * Kerbalism.elapsed_s, true); } else { recipe.Output(output.name, output.rate * Kerbalism.elapsed_s, true); } } resources.Transform(recipe); // determine environment conditions bool lighting = natural + artificial >= light_tolerance; bool pressure = pressure_tolerance <= double.Epsilon || vi.pressure >= pressure_tolerance; bool radiation = radiation_tolerance <= double.Epsilon || vi.radiation * (1.0 - vi.shielding) < radiation_tolerance; // determine input resources conditions // - comparing against amounts in previous simulation step bool inputs = true; string missing_res = string.Empty; bool dis_WACO2 = false; foreach (ModuleResource input in resHandler.inputResources) { // combine WasteAtmosphere and CO2 if both exist if (input.name == "WasteAtmosphere" || input.name == "CarbonDioxide") { if (dis_WACO2 || Cache.VesselInfo(vessel).breathable) { continue; // skip if already checked or atmosphere is breathable } if (WACO2) { if (resources.Info(vessel, "WasteAtmosphere").amount <= double.Epsilon && resources.Info(vessel, "CarbonDioxide").amount <= double.Epsilon) { inputs = false; missing_res = "CarbonDioxide"; break; } dis_WACO2 = true; continue; } } if (resources.Info(vessel, input.name).amount <= double.Epsilon) { inputs = false; missing_res = input.name; break; } } // if growing if (lighting && pressure && radiation && inputs) { // increase growth growth += crop_rate * Kerbalism.elapsed_s; growth = Math.Min(growth, 1.0); // notify the user when crop can be harvested if (growth >= 0.99) { Message.Post(Lib.BuildString("On <b>", vessel.vesselName, "</b> the crop is ready to be harvested")); growth = 1.0; } } // update time-to-harvest tta = (1.0 - growth) / crop_rate; // update issues issue = !inputs?Lib.BuildString("missing ", missing_res) : !lighting ? "insufficient lighting" : !pressure ? "insufficient pressure" : !radiation ? "excessive radiation" : string.Empty; } }
static void ProcessAsteroidDrill(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleAsteroidDrill asteroid_drill, Vessel_resources resources, double elapsed_s) { // note: untested // note: ignore stock temperature mechanic of asteroid drills // note: ignore auto shutdown // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation) // if active if (Lib.Proto.GetBool(m, "IsActivated")) { // get asteroid data ProtoPartModuleSnapshot asteroid_info = null; ProtoPartModuleSnapshot asteroid_resource = null; foreach (ProtoPartSnapshot pp in v.protoVessel.protoPartSnapshots) { if (asteroid_info == null) { asteroid_info = pp.modules.Find(k => k.moduleName == "ModuleAsteroidInfo"); } if (asteroid_resource == null) { asteroid_resource = pp.modules.Find(k => k.moduleName == "ModuleAsteroidResource"); } } // if there is actually an asteroid attached to this active asteroid drill (it should) if (asteroid_info != null && asteroid_resource != null) { // get some data double mass_threshold = Lib.Proto.GetDouble(asteroid_info, "massThresholdVal"); double mass = Lib.Proto.GetDouble(asteroid_info, "currentMassVal"); double abundance = Lib.Proto.GetDouble(asteroid_resource, "abundance"); string res_name = Lib.Proto.GetString(asteroid_resource, "resourceName"); double res_density = PartResourceLibrary.Instance.GetDefinition(res_name).density; // if asteroid isn't depleted if (mass > mass_threshold && abundance > double.Epsilon) { // deduce crew bonus int exp_level = -1; if (asteroid_drill.UseSpecialistBonus) { foreach (ProtoCrewMember c in Lib.CrewList(v)) { if (c.experienceTrait.Effects.Find(k => k.Name == asteroid_drill.ExperienceEffect) != null) { exp_level = Math.Max(exp_level, c.experienceLevel); } } } double exp_bonus = exp_level < 0 ? asteroid_drill.EfficiencyBonus * asteroid_drill.SpecialistBonusBase : asteroid_drill.EfficiencyBonus * (asteroid_drill.SpecialistBonusBase + (asteroid_drill.SpecialistEfficiencyFactor * (exp_level + 1))); // determine resource extracted double res_amount = abundance * asteroid_drill.Efficiency * exp_bonus * elapsed_s; // transform EC into mined resource Resource_recipe recipe = new Resource_recipe(p); recipe.Input("ElectricCharge", asteroid_drill.PowerConsumption * elapsed_s); recipe.Output(res_name, res_amount, true); resources.Transform(recipe); // if there was ec // note: comparing against amount in previous simulation step if (resources.Info(v, "ElectricCharge").amount > double.Epsilon) { // consume asteroid mass Lib.Proto.Set(asteroid_info, "currentMassVal", (mass - res_density * res_amount)); } } } // undo stock behavior by forcing last_update_time to now Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime()); } }
static void ProcessDrill(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleResourceHarvester harvester, Vessel_resources resources, double elapsed_s) { // note: ignore stock temperature mechanic of harvesters // note: ignore auto shutdown // note: ignore depletion (stock seem to do the same) // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation) // if active if (Lib.Proto.GetBool(m, "IsActivated")) { // do nothing if full // note: comparing against previous amount if (resources.Info(v, harvester.ResourceName).level < harvester.FillAmount - double.Epsilon) { // deduce crew bonus int exp_level = -1; if (harvester.UseSpecialistBonus) { foreach (ProtoCrewMember c in Lib.CrewList(v)) { if (c.experienceTrait.Effects.Find(k => k.Name == harvester.ExperienceEffect) != null) { exp_level = Math.Max(exp_level, c.experienceLevel); } } } double exp_bonus = exp_level < 0 ? harvester.EfficiencyBonus * harvester.SpecialistBonusBase : harvester.EfficiencyBonus * (harvester.SpecialistBonusBase + (harvester.SpecialistEfficiencyFactor * (exp_level + 1))); // detect amount of ore in the ground AbundanceRequest request = new AbundanceRequest { Altitude = v.altitude, BodyId = v.mainBody.flightGlobalsIndex, CheckForLock = false, Latitude = v.latitude, Longitude = v.longitude, ResourceType = (HarvestTypes)harvester.HarvesterType, ResourceName = harvester.ResourceName }; double abundance = ResourceMap.Instance.GetAbundance(request); // if there is actually something (should be if active when unloaded) if (abundance > harvester.HarvestThreshold) { // create and commit recipe Resource_recipe recipe = new Resource_recipe(p); foreach (var ir in harvester.inputList) { recipe.Input(ir.ResourceName, ir.Ratio * elapsed_s); } recipe.Output(harvester.ResourceName, abundance * harvester.Efficiency * exp_bonus * elapsed_s, true); resources.Transform(recipe); } } // undo stock behavior by forcing last_update_time to now Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime()); } }
public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s) { // store list of crew to kill List <ProtoCrewMember> deferred_kills = new List <ProtoCrewMember>(); // get input resource handler Resource_info res = input.Length > 0 ? resources.Info(v, input) : null; // determine message variant uint variant = vi.temperature < PreferencesLifeSupport.Instance.survivalTemperature ? 0 : 1u; // get product of all environment modifiers double k = Modifiers.Evaluate(v, vi, resources, modifiers); bool lifetime_enabled = PreferencesBasic.Instance.lifetime; // for each crew foreach (ProtoCrewMember c in Lib.CrewList(v)) { // get kerbal data KerbalData kd = DB.Kerbal(c.name); // skip rescue kerbals if (kd.rescue) { continue; } // skip disabled kerbals if (kd.disabled) { continue; } // get kerbal property data from db RuleData rd = kd.Rule(name); rd.lifetime = lifetime_enabled && lifetime; // if continuous double step; if (interval <= double.Epsilon) { // influence consumption by elapsed time step = elapsed_s; } // if interval-based else { // accumulate time rd.time_since += elapsed_s; // determine number of steps step = Math.Floor(rd.time_since / interval); // consume time rd.time_since -= step * interval; // remember if a meal is consumed/produced in this simulation step if (step > 0.99) { res.SetMealHappened(); } if (output.Length > 0 && step > 0.99) { ResourceCache.Info(v, output).SetMealHappened(); } } // if continuous, or if one or more intervals elapsed if (step > double.Epsilon) { double r = rate * Variance(name, c, individuality); // kerbal-specific variance // if there is a resource specified if (res != null && r > double.Epsilon) { // determine amount of resource to consume double required = r // consumption rate * k // product of environment modifiers * step; // seconds elapsed or number of steps // if there is no output if (output.Length == 0) { // simply consume (that is faster) res.Consume(required); } // if there is an output and monitor is false else if (!monitor) { // transform input into output resource // - rules always dump excess overboard (because it is waste) Resource_recipe recipe = new Resource_recipe((Part)null); // kerbals are not associated with a part recipe.Input(input, required); recipe.Output(output, required * ratio, true); resources.Transform(recipe); } // if monitor then do not consume input resource and only produce output if resource percentage + monitor_offset is < 100% else if ((res.amount / res.capacity) + monitor_offset < 1.0) { // simply produce (that is faster) resources.Produce(v, output, required * ratio); } } // degenerate: // - if the environment modifier is not telling to reset (by being zero) // - if the input threshold is reached if used // - if this rule is resource-less, or if there was not enough resource in the vessel if (input_threshold >= double.Epsilon) { if (res.amount >= double.Epsilon && res.capacity >= double.Epsilon) { trigger = (res.amount / res.capacity) + monitor_offset >= input_threshold; } else { trigger = false; } } else { trigger = input.Length == 0 || res.amount <= double.Epsilon; } if (k > 0.0 && trigger) { rd.problem += degeneration // degeneration rate per-second or per-interval * k // product of environment modifiers * step // seconds elapsed or by number of steps * Variance(name, c, variance); // kerbal-specific variance } // else slowly recover else { rd.problem *= 1.0 / (1.0 + Math.Max(interval, 1.0) * step * 0.002); } } bool do_breakdown = false; if (breakdown && PreferencesBasic.Instance.stressBreakdowns) { // stress level double breakdown_probability = rd.problem / warning_threshold; breakdown_probability = Lib.Clamp(breakdown_probability, 0.0, 1.0); // use the stupidity of a kerbal. // however, nobody is perfect - not even a kerbal with a stupidity of 0. breakdown_probability *= c.stupidity * 0.6 + 0.4; // apply the weekly error rate breakdown_probability *= PreferencesBasic.Instance.stressBreakdownRate; // now we have the probability for one failure per week, based on the // individual stupidity and stress level of the kerbal. breakdown_probability = (breakdown_probability * elapsed_s) / (Lib.DaysInYear() * Lib.HoursInDay() * 3600); if (breakdown_probability > Lib.RandomDouble()) { do_breakdown = true; // we're stressed out and just made a major mistake, this further increases the stress level... rd.problem += warning_threshold * 0.05; // add 5% of the warning treshold to current stress level } } // kill kerbal if necessary if (rd.problem >= fatal_threshold) { if (fatal_message.Length > 0) { Message.Post(breakdown ? Severity.breakdown : Severity.fatality, Lib.ExpandMsg(fatal_message, v, c, variant)); } if (breakdown) { do_breakdown = true; // move back between warning and danger level rd.problem = (warning_threshold + danger_threshold) * 0.5; // make sure next danger message is shown rd.message = 1; } else { deferred_kills.Add(c); } } // show messages else if (rd.problem >= danger_threshold && rd.message < 2) { if (danger_message.Length > 0) { Message.Post(Severity.danger, Lib.ExpandMsg(danger_message, v, c, variant)); } rd.message = 2; } else if (rd.problem >= warning_threshold && rd.message < 1) { if (warning_message.Length > 0) { Message.Post(Severity.warning, Lib.ExpandMsg(warning_message, v, c, variant)); } rd.message = 1; } else if (rd.problem < warning_threshold && rd.message > 0) { if (relax_message.Length > 0) { Message.Post(Severity.relax, Lib.ExpandMsg(relax_message, v, c, variant)); } rd.message = 0; } if (do_breakdown) { // trigger breakdown event Misc.Breakdown(v, c); } } // execute the deferred kills foreach (ProtoCrewMember c in deferred_kills) { Misc.Kill(v, c); } }
public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s) { // store list of crew to kill List <ProtoCrewMember> deferred_kills = new List <ProtoCrewMember>(); // get input resource handler Resource_info res = input.Length > 0 ? resources.Info(v, input) : null; // determine message variant uint variant = vi.temperature < Settings.SurvivalTemperature ? 0 : 1u; // get product of all environment modifiers double k = Modifiers.Evaluate(v, vi, resources, modifiers); // for each crew foreach (ProtoCrewMember c in Lib.CrewList(v)) { // get kerbal data KerbalData kd = DB.Kerbal(c.name); // skip rescue kerbals if (kd.rescue) { continue; } // skip disabled kerbals if (kd.disabled) { continue; } // get kerbal property data from db RuleData rd = kd.Rule(name); // if continuous double step; if (interval <= double.Epsilon) { // influence consumption by elapsed time step = elapsed_s; } // if interval-based else { // accumulate time rd.time_since += elapsed_s; // determine number of steps step = Math.Floor(rd.time_since / interval); // consume time rd.time_since -= step * interval; // remember if a meal is consumed/produced in this simulation step res.meal_happened |= step > 0.99; if (output.Length > 0) { ResourceCache.Info(v, output).meal_happened |= step > 0.99; } } // if continuous, or if one or more intervals elapsed if (step > double.Epsilon) { // if there is a resource specified if (res != null && rate > double.Epsilon) { // determine amount of resource to consume double required = rate // consumption rate * k // product of environment modifiers * step; // seconds elapsed or number of steps // if there is no output if (output.Length == 0) { // simply consume (that is faster) res.Consume(required); } // if there is an output and monitor is false else if (!monitor) { // transform input into output resource // - rules always dump excess overboard (because it is waste) Resource_recipe recipe = new Resource_recipe(); recipe.Input(input, required); recipe.Output(output, required * ratio, true); resources.Transform(recipe); } // if monitor then do not consume input resource and only produce output if resource percentage + monitor_offset is < 100% else if ((res.amount / res.capacity) + monitor_offset < 1.0) { // simply produce (that is faster) resources.Produce(v, output, required * ratio); } } // degenerate: // - if the environment modifier is not telling to reset (by being zero) // - if the input threshold is reached if used // - if this rule is resource-less, or if there was not enough resource in the vessel if (input_threshold >= double.Epsilon) { if (res.amount >= double.Epsilon && res.capacity >= double.Epsilon) { trigger = (res.amount / res.capacity) + monitor_offset >= input_threshold; } else { trigger = false; } } else { trigger = input.Length == 0 || res.amount <= double.Epsilon; } if (k > 0.0 && trigger) { rd.problem += degeneration // degeneration rate per-second or per-interval * k // product of environment modifiers * step // seconds elapsed or by number of steps * Variance(c, variance); // kerbal-specific variance } // else slowly recover else { rd.problem *= 1.0 / (1.0 + Math.Max(interval, 1.0) * step * 0.002); rd.problem = Math.Max(rd.problem, 0.0); } } // kill kerbal if necessary if (rd.problem >= fatal_threshold) { if (fatal_message.Length > 0) { Message.Post(breakdown ? Severity.breakdown : Severity.fatality, Lib.ExpandMsg(fatal_message, v, c, variant)); } if (breakdown) { // trigger breakdown event Misc.Breakdown(v, c); // move back between warning and danger level rd.problem = (warning_threshold + danger_threshold) * 0.5; // make sure next danger message is shown rd.message = 1; } else { deferred_kills.Add(c); } } // show messages else if (rd.problem >= danger_threshold && rd.message < 2) { if (danger_message.Length > 0) { Message.Post(Severity.danger, Lib.ExpandMsg(danger_message, v, c, variant)); } rd.message = 2; } else if (rd.problem >= warning_threshold && rd.message < 1) { if (warning_message.Length > 0) { Message.Post(Severity.warning, Lib.ExpandMsg(warning_message, v, c, variant)); } rd.message = 1; } else if (rd.problem < warning_threshold && rd.message > 0) { if (relax_message.Length > 0) { Message.Post(Severity.relax, Lib.ExpandMsg(relax_message, v, c, variant)); } rd.message = 0; } } // execute the deferred kills foreach (ProtoCrewMember c in deferred_kills) { Misc.Kill(v, c); } }