示例#1
0
        /// <summary>
        /// SegmentIntersect
        /// </summary>
        /// <param name="frac"></param>
        /// <param name="pos"></param>
        /// <param name="normal"></param>
        /// <param name="seg"></param>
        /// <returns>bool</returns>
        public override bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            // move segment into octree space
            seg.Origin = Vector3.Transform(seg.Origin, invTransform);
            seg.Delta  = Vector3.TransformNormal(seg.Delta, invTransform);


            BoundingBox segBox = BoundingBoxHelper.InitialBox;

            BoundingBoxHelper.AddSegment(seg, ref segBox);

            int[] potTriArray = DetectFunctor.IntStackAlloc();

            int numTriangles = GetTrianglesIntersectingtAABox(potTriArray, DetectFunctor.MaxLocalStackTris, ref segBox);

            float tv1, tv2;

            pos    = Vector3.Zero;
            normal = Vector3.Zero;

            float bestFrac = float.MaxValue;

            for (int iTriangle = 0; iTriangle < numTriangles; ++iTriangle)
            {
                IndexedTriangle meshTriangle = GetTriangle(potTriArray[iTriangle]);
                float           thisFrac;
                Triangle        tri = new Triangle(GetVertex(meshTriangle.GetVertexIndex(0)),
                                                   GetVertex(meshTriangle.GetVertexIndex(1)),
                                                   GetVertex(meshTriangle.GetVertexIndex(2)));

                if (Intersection.SegmentTriangleIntersection(out thisFrac, out tv1, out tv2, seg, tri))
                {
                    if (thisFrac < bestFrac)
                    {
                        bestFrac = thisFrac;
                        // re-project
                        pos    = Vector3.Transform(seg.GetPoint(thisFrac), transformMatrix);
                        normal = Vector3.TransformNormal(meshTriangle.Plane.Normal, transformMatrix);
                    }
                }
            }

            frac = bestFrac;
            if (bestFrac < float.MaxValue)
            {
                DetectFunctor.FreeStackAlloc(potTriArray);
                return(true);
            }
            else
            {
                DetectFunctor.FreeStackAlloc(potTriArray);
                return(false);
            }
        }
示例#2
0
        /// <summary>
        /// DoOverlapBoxTriangleTest
        /// </summary>
        /// <param name="oldBox"></param>
        /// <param name="newBox"></param>
        /// <param name="triangle"></param>
        /// <param name="mesh"></param>
        /// <param name="info"></param>
        /// <param name="collTolerance"></param>
        /// <param name="collisionFunctor"></param>
        /// <returns>bool</returns>
        private static bool DoOverlapBoxTriangleTest(Box oldBox, Box newBox,
            ref IndexedTriangle triangle, TriangleMesh mesh,
            ref CollDetectInfo info, float collTolerance,
            CollisionFunctor collisionFunctor)
        {
            Matrix4 dirs0 = newBox.Orientation;

            #region REFERENCE: Triangle tri = new Triangle(mesh.GetVertex(triangle.GetVertexIndex(0)),mesh.GetVertex(triangle.GetVertexIndex(1)),mesh.GetVertex(triangle.GetVertexIndex(2)));
            Vector3 triVec0;
            Vector3 triVec1;
            Vector3 triVec2;
            mesh.GetVertex(triangle.GetVertexIndex(0), out triVec0);
            mesh.GetVertex(triangle.GetVertexIndex(1), out triVec1);
            mesh.GetVertex(triangle.GetVertexIndex(2), out triVec2);

            // Deano move tri into world space
            Matrix4 transformMatrix = mesh.TransformMatrix;
            Vector3.Transform(ref triVec0, ref transformMatrix, out triVec0);
            Vector3.Transform(ref triVec1, ref transformMatrix, out triVec1);
            Vector3.Transform(ref triVec2, ref transformMatrix, out triVec2);

            Triangle tri = new Triangle(ref triVec0,ref triVec1,ref triVec2);
            #endregion

            #region REFERENCE Vector3 triEdge0 = (tri.GetPoint(1) - tri.GetPoint(0));
            Vector3 pt0;
            Vector3 pt1;
            tri.GetPoint(0, out pt0);
            tri.GetPoint(1, out pt1);

            Vector3 triEdge0;
            Vector3.Subtract(ref pt1, ref pt0, out triEdge0);
            #endregion

            #region REFERENCE Vector3 triEdge1 = (tri.GetPoint(2) - tri.GetPoint(1));
            Vector3 pt2;
            tri.GetPoint(2, out pt2);

            Vector3 triEdge1;
            Vector3.Subtract(ref pt2, ref pt1, out triEdge1);
            #endregion

            #region REFERENCE Vector3 triEdge2 = (tri.GetPoint(0) - tri.GetPoint(2));
            Vector3 triEdge2;
            Vector3.Subtract(ref pt0, ref pt2, out triEdge2);
            #endregion

            triEdge0.Normalize();
            triEdge1.Normalize();
            triEdge2.Normalize();

            // BEN-OPTIMISATION: Replaced loops with code that requires no looping.
            //                   The new code is faster, has less allocations and math especially
            //                   since the method returns as soon as it finds a non-overlapping axis,
            //                   i.e. Before irreleveat allocations occur.
            #region "Old (less efficient) code"
            /*Vector3 triNormal = triangle.Plane.Normal;

            // the 15 potential separating axes
            const int numAxes = 13;
            Vector3[] axes = new Vector3[numAxes];

            axes[0] = triNormal;
            axes[1] = dirs0.Right;
            axes[2] = dirs0.Up;
            axes[3] = dirs0.Backward;
            Vector3.Cross(ref axes[1], ref triEdge0, out axes[4]);
            Vector3.Cross(ref axes[1], ref triEdge1, out axes[5]);
            Vector3.Cross(ref axes[1], ref triEdge2, out axes[6]);
            Vector3.Cross(ref axes[2], ref triEdge0, out axes[7]);
            Vector3.Cross(ref axes[2], ref triEdge1, out axes[8]);
            Vector3.Cross(ref axes[2], ref triEdge2, out axes[9]);
            Vector3.Cross(ref axes[3], ref triEdge0, out axes[10]);
            Vector3.Cross(ref axes[3], ref triEdge1, out axes[11]);
            Vector3.Cross(ref axes[3], ref triEdge2, out axes[12]);

            // the overlap depths along each axis
            float[] overlapDepths = new float[numAxes];

            // see if the boxes are separate along any axis, and if not keep a
            // record of the depths along each axis
            int i;
            for (i = 0; i < numAxes; ++i)
            {
                overlapDepths[i] = 1.0f;
                if (Disjoint(out overlapDepths[i], axes[i], newBox, tri, collTolerance))
                    return false;
            }

            // The box overlap, find the separation depth closest to 0.
            float minDepth = float.MaxValue;
            int minAxis = -1;

            for (i = 0; i < numAxes; ++i)
            {
                // If we can't normalise the axis, skip it
                float l2 = axes[i].LengthSquared;
                if (l2 < JiggleMath.Epsilon)
                    continue;

                // Normalise the separation axis and the depth
                float invl = 1.0f / (float)System.Math.Sqrt(l2);
                axes[i] *= invl;
                overlapDepths[i] *= invl;

                // If this axis is the minimum, select it
                if (overlapDepths[i] < minDepth)
                {
                    minDepth = overlapDepths[i];
                    minAxis = i;
                }
            }

            if (minAxis == -1)
                return false;

            // Make sure the axis is facing towards the 0th box.
            // if not, invert it
            Vector3 D = newBox.GetCentre() - tri.Centre;
            Vector3 N = axes[minAxis];
            float depth = overlapDepths[minAxis];*/
            #endregion
            #region "Optimised code"
            Vector3 triNormal = triangle.Plane.Normal;
            Vector3 right = dirs0.Right();
            Vector3 up = dirs0.Up();
            Vector3 backward = dirs0.Backward();

            float testDepth;

            if (Disjoint(out testDepth, ref triNormal, newBox, ref tri, collTolerance))
                return (false);

            float depth = testDepth;
            Vector3 N = triNormal;

            if (Disjoint(out testDepth, ref right, newBox, ref tri, collTolerance))
                return (false);

            if (testDepth < depth)
            {
                depth = testDepth;
                N = right;
            }

            if (Disjoint(out testDepth, ref up, newBox, ref tri, collTolerance))
                return (false);

            if (testDepth < depth)
            {
                depth = testDepth;
                N = up;
            }

            if (Disjoint(out testDepth, ref backward, newBox, ref tri, collTolerance))
                return (false);

            if (testDepth < depth)
            {
                depth = testDepth;
                N = backward;
            }

            Vector3 axis;

            Vector3.Cross(ref right, ref triEdge0, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref right, ref triEdge1, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref right, ref triEdge2, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref up, ref triEdge0, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref up, ref triEdge1, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref up, ref triEdge2, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref backward, ref triEdge0, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref backward, ref triEdge1, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            Vector3.Cross(ref backward, ref triEdge2, out axis);
            if (Disjoint(out testDepth, ref axis, newBox, ref tri, collTolerance))
                return (false);

            testDepth *= 1.0f / (float)System.Math.Sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
            if (testDepth < depth)
            {
                depth = testDepth;
                N = axis;
            }

            /*if (N == Vector3.Zero)
                return (false);*/

            Vector3 D = newBox.GetCentre() - tri.Centre;
            N.Normalize();
            int i;

            #endregion

            if (Vector3.Dot(D, N) < 0.0f)
               N *= -1;

            Vector3 boxOldPos = (info.Skin0.Owner != null) ? info.Skin0.Owner.OldPosition : Vector3.Zero;
            Vector3 boxNewPos = (info.Skin0.Owner != null) ? info.Skin0.Owner.Position : Vector3.Zero;
            Vector3 meshPos = (info.Skin1.Owner != null) ? info.Skin1.Owner.OldPosition : Vector3.Zero;

            List<Vector3> pts = new List<Vector3>();
            //pts.Clear();

            const float combinationDist = 0.05f;
            GetBoxTriangleIntersectionPoints(pts, newBox, tri, depth + combinationDist);

            // adjust the depth
            #region REFERENCE: Vector3 delta = boxNewPos - boxOldPos;
            Vector3 delta;
            Vector3.Subtract(ref boxNewPos, ref boxOldPos, out delta);
            #endregion

            #region REFERENCE: float oldDepth = depth + Vector3.Dot(delta, N);
            float oldDepth;
            Vector3.Dot(ref delta, ref N, out oldDepth);
            oldDepth += depth;
            #endregion

            unsafe
            {
                // report collisions
                int numPts = pts.Count;
            #if USE_STACKALLOC
                SmallCollPointInfo* collPts = stackalloc SmallCollPointInfo[MaxLocalStackSCPI];
            #else
                SmallCollPointInfo[] collPtArray = SCPIStackAlloc();
                fixed (SmallCollPointInfo* collPts = collPtArray)
            #endif
                {
                    if (numPts > 0)
                    {
                        if (numPts >= MaxLocalStackSCPI)
                        {
                            numPts = MaxLocalStackSCPI - 1;
                        }

                        // adjust positions
                        for (i = 0; i < numPts; ++i)
                        {
                            // BEN-OPTIMISATION: Reused existing SmallCollPointInfo and inlined vector substraction.
                            collPts[i].R0.X = pts[i].X - boxNewPos.X;
                            collPts[i].R0.Y = pts[i].Y - boxNewPos.Y;
                            collPts[i].R0.Z = pts[i].Z - boxNewPos.Z;

                            collPts[i].R1.X = pts[i].X - meshPos.X;
                            collPts[i].R1.Y = pts[i].Y - meshPos.Y;
                            collPts[i].R1.Z = pts[i].Z - meshPos.Z;

                            collPts[i].InitialPenetration = oldDepth;
                        }

                        collisionFunctor.CollisionNotify(ref info, ref N, collPts, numPts);
            #if !USE_STACKALLOC
                        FreeStackAlloc(collPtArray);
            #endif
                        return true;
                    }
                    else
                    {
            #if !USE_STACKALLOC
                        FreeStackAlloc(collPtArray);
            #endif
                        return false;
                    }
                }

            }
        }
示例#3
0
        public override bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            BoundingBox segBox = BoundingBoxHelper.InitialBox;

            BoundingBoxHelper.AddSegment(seg, ref segBox);

            unsafe
            {
#if USE_STACKALLOC
                int *potentialTriangles = stackalloc int[MaxLocalStackTris];
                {
#else
                int[] potTriArray = DetectFunctor.IntStackAlloc();
                fixed(int *potentialTriangles = potTriArray)
                {
#endif
                    int numTriangles = GetTrianglesIntersectingtAABox(potentialTriangles, DetectFunctor.MaxLocalStackSCPI, ref segBox);

                    float tv1, tv2;

                    pos    = Vector3.Zero;
                    normal = Vector3.Zero;

                    // move segment into octree space
                    seg.Origin = Vector3.Transform(seg.Origin, invTransform);
                    seg.Delta  = Vector3.TransformNormal(seg.Delta, invTransform);

                    float bestFrac = float.MaxValue;
                    for (int iTriangle = 0; iTriangle < numTriangles; ++iTriangle)
                    {
                        IndexedTriangle meshTriangle = GetTriangle(potentialTriangles[iTriangle]);
                        float           thisFrac;
                        Triangle        tri = new Triangle(GetVertex(meshTriangle.GetVertexIndex(0)),
                                                           GetVertex(meshTriangle.GetVertexIndex(1)),
                                                           GetVertex(meshTriangle.GetVertexIndex(2)));

                        if (Intersection.SegmentTriangleIntersection(out thisFrac, out tv1, out tv2, seg, tri))
                        {
                            if (thisFrac < bestFrac)
                            {
                                bestFrac = thisFrac;
                                pos      = seg.GetPoint(thisFrac);
                                normal   = meshTriangle.Plane.Normal;
                            }
                        }
                    }

                    frac = bestFrac;
                    if (bestFrac < float.MaxValue)
                    {
                        DetectFunctor.FreeStackAlloc(potTriArray);
                        return(true);
                    }
                    else
                    {
                        DetectFunctor.FreeStackAlloc(potTriArray);
                        return(false);
                    }
#if USE_STACKALLOC
                }
#else
                }
#endif
            }
        }
 public IndexedTriangle GetIndexedTriangle(int index)
 {
     TriangleVertexIndicesKD tri = indices[index];
     IndexedTriangle triangle = new IndexedTriangle(tri.I0, tri.I1, tri.I2, vertices);
     return triangle;
 }
        private static bool DoOverlapBoxTriangleTest(Box oldBox, Box newBox,
            ref IndexedTriangle triangle, TriangleMesh mesh,
            ref CollDetectInfo info, float collTolerance,
            CollisionFunctor collisionFunctor)
        {
            Matrix dirs0 = newBox.Orientation;

            #region REFERENCE: Triangle tri = new Triangle(mesh.GetVertex(triangle.GetVertexIndex(0)),mesh.GetVertex(triangle.GetVertexIndex(1)),mesh.GetVertex(triangle.GetVertexIndex(2)));
            Vector3 triVec0;
            Vector3 triVec1;
            Vector3 triVec2;
            mesh.GetVertex(triangle.GetVertexIndex(0), out triVec0);
            mesh.GetVertex(triangle.GetVertexIndex(1), out triVec1);
            mesh.GetVertex(triangle.GetVertexIndex(2), out triVec2);

            // Deano move tri into world space
            Matrix transformMatrix = mesh.TransformMatrix;
            Vector3.Transform(ref triVec0, ref transformMatrix, out triVec0);
            Vector3.Transform(ref triVec1, ref transformMatrix, out triVec1);
            Vector3.Transform(ref triVec2, ref transformMatrix, out triVec2);

            Triangle tri = new Triangle(ref triVec0,ref triVec1,ref triVec2);
            #endregion

            #region REFERENCE Vector3 triEdge0 = (tri.GetPoint(1) - tri.GetPoint(0));
            Vector3 pt0;
            Vector3 pt1;
            tri.GetPoint(0, out pt0);
            tri.GetPoint(1, out pt1);

            Vector3 triEdge0;
            Vector3.Subtract(ref pt1, ref pt0, out triEdge0);
            #endregion

            #region REFERENCE Vector3 triEdge1 = (tri.GetPoint(2) - tri.GetPoint(1));
            Vector3 pt2;
            tri.GetPoint(2, out pt2);

            Vector3 triEdge1;
            Vector3.Subtract(ref pt2, ref pt1, out triEdge1);
            #endregion

            #region REFERENCE Vector3 triEdge2 = (tri.GetPoint(0) - tri.GetPoint(2));
            Vector3 triEdge2;
            Vector3.Subtract(ref pt0, ref pt2, out triEdge2);
            #endregion

            triEdge0.Normalize();
            triEdge1.Normalize();
            triEdge2.Normalize();

            Vector3 triNormal = triangle.Plane.Normal;

            // the 15 potential separating axes
            const int numAxes = 13;
            Vector3[] axes = new Vector3[numAxes];

            axes[0] = triNormal;
            axes[1] = dirs0.Right;
            axes[2] = dirs0.Up;
            axes[3] = dirs0.Backward;
            Vector3.Cross(ref axes[1], ref triEdge0, out axes[4]);
            Vector3.Cross(ref axes[1], ref triEdge1, out axes[5]);
            Vector3.Cross(ref axes[1], ref triEdge2, out axes[6]);
            Vector3.Cross(ref axes[2], ref triEdge0, out axes[7]);
            Vector3.Cross(ref axes[2], ref triEdge1, out axes[8]);
            Vector3.Cross(ref axes[2], ref triEdge2, out axes[9]);
            Vector3.Cross(ref axes[3], ref triEdge0, out axes[10]);
            Vector3.Cross(ref axes[3], ref triEdge1, out axes[11]);
            Vector3.Cross(ref axes[3], ref triEdge2, out axes[12]);

            // the overlap depths along each axis
            float[] overlapDepths = new float[numAxes];

            // see if the boxes are separate along any axis, and if not keep a
            // record of the depths along each axis
            int i;
            for (i = 0; i < numAxes; ++i)
            {
                overlapDepths[i] = 1.0f;
                if (Disjoint(out overlapDepths[i], axes[i], newBox, tri, collTolerance))
                    return false;
            }

            // The box overlap, find the separation depth closest to 0.
            float minDepth = float.MaxValue;
            int minAxis = -1;

            for (i = 0; i < numAxes; ++i)
            {
                // If we can't normalise the axis, skip it
                float l2 = axes[i].LengthSquared();
                if (l2 < JiggleMath.Epsilon)
                    continue;

                // Normalise the separation axis and the depth
                float invl = 1.0f / (float)System.Math.Sqrt(l2);
                axes[i] *= invl;
                overlapDepths[i] *= invl;

                // If this axis is the minimum, select it
                if (overlapDepths[i] < minDepth)
                {
                    minDepth = overlapDepths[i];
                    minAxis = i;
                }
            }

            if (minAxis == -1)
                return false;

            // Make sure the axis is facing towards the 0th box.
            // if not, invert it
            Vector3 D = newBox.GetCentre() - tri.Centre;
            Vector3 N = axes[minAxis];
            float depth = overlapDepths[minAxis];

            if (Vector3.Dot(D, N) < 0.0f)
               N *= -1;

            Vector3 boxOldPos = (info.Skin0.Owner != null) ? info.Skin0.Owner.OldPosition : Vector3.Zero;
            Vector3 boxNewPos = (info.Skin0.Owner != null) ? info.Skin0.Owner.Position : Vector3.Zero;
            Vector3 meshPos = (info.Skin1.Owner != null) ? info.Skin1.Owner.OldPosition : Vector3.Zero;

            List<Vector3> pts = new List<Vector3>();
            //pts.Clear();

            const float combinationDist = 0.05f;
            GetBoxTriangleIntersectionPoints(pts, newBox, tri, depth + combinationDist);

            // adjust the depth
            #region REFERENCE: Vector3 delta = boxNewPos - boxOldPos;
            Vector3 delta;
            Vector3.Subtract(ref boxNewPos, ref boxOldPos, out delta);
            #endregion

            #region REFERENCE: float oldDepth = depth + Vector3.Dot(delta, N);
            float oldDepth;
            Vector3.Dot(ref delta, ref N, out oldDepth);
            oldDepth += depth;
            #endregion

            unsafe
            {
                // report collisions
                int numPts = pts.Count;
            #if USE_STACKALLOC
                SmallCollPointInfo* collPts = stackalloc SmallCollPointInfo[MaxLocalStackSCPI];
            #else
                SmallCollPointInfo[] collPtArray = SCPIStackAlloc();
                fixed (SmallCollPointInfo* collPts = collPtArray)
            #endif
                {
                    if (numPts > 0)
                    {
                        if (numPts >= MaxLocalStackSCPI)
                        {
                            numPts = MaxLocalStackSCPI - 1;
                        }

                        // adjust positions
                        for (i = 0; i < numPts; ++i)
                        {
                            collPts[i] = new SmallCollPointInfo(pts[i] - boxNewPos, pts[i] - meshPos, oldDepth);
                        }

                        collisionFunctor.CollisionNotify(ref info, ref N, collPts, numPts);
            #if !USE_STACKALLOC
                        FreeStackAlloc(collPtArray);
            #endif
                        return true;
                    }
                    else
                    {
            #if !USE_STACKALLOC
                        FreeStackAlloc(collPtArray);
            #endif
                        return false;
                    }
                }

            }
        }