/// <summary>
        /// Indicates if a segment intersects a triangle
        /// </summary>
        /// <param name="seg"></param>
        /// <param name="triangle"></param>
        /// <returns></returns>
        public static bool SegmentTriangleOverlap(Segment seg, Triangle triangle)
        {
            /// the parameters - if hit then they get copied into the args
            float u, v, t;

            Vector3 e1 = triangle.Edge0;
            Vector3 e2 = triangle.Edge1;

            Vector3 p = Vector3.Cross(seg.Delta, e2);
            float a = Vector3.Dot(e1, p);

            if (a > -JiggleMath.Epsilon && a < JiggleMath.Epsilon)
                return false;

            float f = 1.0f / a;
            Vector3 s = seg.Origin - triangle.Origin;
            u = f * Vector3.Dot(s, p);

            if (u < 0.0f || u > 1.0f)
                return false;

            Vector3 q = Vector3.Cross(s, e1);
            v = f * Vector3.Dot(seg.Delta, q);

            if (v < 0.0f || (u + v) > 1.0f)
                return false;

            t = f * Vector3.Dot(e2, q);

            if (t < 0.0f || t > 1.0f)
                return false;

            return true;
        }
        public override void CollDetect(CollDetectInfo info, float collTolerance, CollisionFunctor collisionFunctor)
        {
            Vector3 body0Pos = (info.Skin0.Owner != null) ? info.Skin0.Owner.OldPosition : Vector3.Zero;
            Vector3 body1Pos = (info.Skin1.Owner != null) ? info.Skin1.Owner.OldPosition : Vector3.Zero;

            // todo - proper swept test
            #region Get Cylinders
            Cylinder oldCylinder0 = (Cylinder)info.Skin0.GetPrimitiveOldWorld(info.IndexPrim0);
            Cylinder newCylinder0 = (Cylinder)info.Skin0.GetPrimitiveNewWorld(info.IndexPrim0);
            Cylinder oldCylinder1 = (Cylinder)info.Skin1.GetPrimitiveOldWorld(info.IndexPrim1);
            Cylinder newCylinder1 = (Cylinder)info.Skin1.GetPrimitiveNewWorld(info.IndexPrim1);
            #endregion

            Segment oldSeg0 = new Segment(oldCylinder0.Position, oldCylinder0.Length * MatrixHelper.GetBackward(oldCylinder0.Orientation));
            Segment newSeg0 = new Segment(newCylinder0.Position, newCylinder0.Length * MatrixHelper.GetBackward(newCylinder0.Orientation));
            Segment oldSeg1 = new Segment(oldCylinder1.Position, oldCylinder1.Length * MatrixHelper.GetBackward(oldCylinder1.Orientation));
            Segment newSeg1 = new Segment(newCylinder1.Position, newCylinder1.Length * MatrixHelper.GetBackward(newCylinder1.Orientation));

            float radSum = newCylinder0.Radius + newCylinder1.Radius;

            float oldt0, oldt1;
            float newt0, newt1;
            float oldDistSq = Distance.SegmentSegmentDistanceSq(out oldt0, out oldt1, oldSeg0, oldSeg1);
            float newDistSq = Distance.SegmentSegmentDistanceSq(out newt0, out newt1, newSeg0, newSeg1);

            if (System.Math.Min(oldDistSq, newDistSq) < ((radSum + collTolerance) * (radSum + collTolerance)))
            {
                Vector3 pos0 = oldSeg0.GetPoint(oldt0);
                Vector3 pos1 = oldSeg1.GetPoint(oldt1);

                Vector3 delta = pos0 - pos1;

                float dist = (float)System.Math.Sqrt((float)oldDistSq);
                float depth = radSum - dist;

                if (dist > JiggleMath.Epsilon)
                {
                    delta /= dist;
                }
                else
                {
                    // todo - make this not random
                    delta = Vector3.TransformCoordinate(Vector3Helper.Backward, Matrix.RotationAxis(Vector3Helper.Up, MathHelper.ToRadians(random.Next(360))));
                }

                Vector3 worldPos = pos1 +
                    (oldCylinder1.Radius - 0.5f * depth) * delta;

                unsafe
                {
                    SmallCollPointInfo collInfo = new SmallCollPointInfo(worldPos - body0Pos, worldPos - body1Pos, depth);
                    collisionFunctor.CollisionNotify(ref info, ref delta, &collInfo, 1);
                }

            }
        }
        /// <summary>
        /// Indicates if a segment overlaps an AABox
        /// </summary>
        /// <param name="seg"></param>
        /// <param name="AABox"></param>
        /// <returns></returns>
        public static bool SegmentAABoxOverlap(Segment seg, AABox AABox)
        {
            Vector3 p0 = seg.Origin;
            Vector3 p1 = seg.GetEnd();

            float[] faceOffsets = new float[2];

            // The AABox faces are aligned with the world directions. Loop
            // over the 3 directions and do the two tests.
            for (int iDir = 0; iDir < 3; iDir++)
            {
                int jDir = (iDir + 1) % 3;
                int kDir = (iDir + 2) % 3;

                // one plane goes through the origin, one is offset
                faceOffsets[0] = JiggleUnsafe.Get(AABox.MinPos, iDir);
                faceOffsets[1] = JiggleUnsafe.Get(AABox.MaxPos, iDir);

                for (int iFace = 0; iFace < 2; iFace++)
                {
                    // distance of each point from to the face plane
                    float dist0 = JiggleUnsafe.Get(ref p0, iDir) - faceOffsets[iFace];
                    float dist1 = JiggleUnsafe.Get(ref p1, iDir) - faceOffsets[iFace];
                    float frac = -1.0f;

                    if (dist0 * dist1 < -JiggleMath.Epsilon)
                        frac = -dist0 / (dist1 - dist0);
                    else if (System.Math.Abs(dist0) < JiggleMath.Epsilon)
                        frac = 0.0f;
                    else if (System.Math.Abs(dist1) < JiggleMath.Epsilon)
                        frac = 1.0f;

                    if (frac >= 0.0f)
                    {
                        //Assert(frac <= 1.0f);
                        Vector3 pt = seg.GetPoint(frac);

                        // check the point is within the face rectangle
                        if ((JiggleUnsafe.Get(ref pt, jDir) > JiggleUnsafe.Get(AABox.MinPos, jDir) - JiggleMath.Epsilon) &&
                            (JiggleUnsafe.Get(ref pt, jDir) < JiggleUnsafe.Get(AABox.MaxPos, jDir) + JiggleMath.Epsilon) &&
                            (JiggleUnsafe.Get(ref pt, kDir) > JiggleUnsafe.Get(AABox.MinPos, kDir) - JiggleMath.Epsilon) &&
                            (JiggleUnsafe.Get(ref pt, kDir) < JiggleUnsafe.Get(AABox.MaxPos, kDir) + JiggleMath.Epsilon))
                        {
                            return true;
                        }
                    }
                }
            }
            return false;
        }
        public static bool SegmentCapsuleIntersection(out float tS, Segment seg, Capsule capsule)
        {
            float bestFrac = float.MaxValue;

            tS = 0;

            // do the main sides
            float sideFrac = float.MaxValue;
            if (!SegmentInfiniteCylinderIntersection(out sideFrac, seg,
                    new Segment(capsule.Position, MatrixHelper.GetBackward(capsule.Orientation)),
                    capsule.Radius))
                return false; // check this

            // only keep this if the side intersection point is within the capsule segment ends
            Vector3 sidePos = seg.GetPoint(sideFrac);
            if (Vector3.Dot(sidePos - capsule.Position, MatrixHelper.GetBackward(capsule.Orientation)) < 0.0f)
                sideFrac = float.MaxValue;
            else if (Vector3.Dot(sidePos - capsule.GetEnd(), MatrixHelper.GetBackward(capsule.Orientation)) > 0.0f)
                sideFrac = float.MaxValue;

            // do the two ends
            float originFrac = float.MaxValue;
            SegmentSphereIntersection(out originFrac, seg, new Sphere(capsule.Position, capsule.Radius));
            float endFrac = float.MaxValue; // Check this!
            SegmentSphereIntersection(out endFrac, seg, new Sphere(capsule.GetEnd(), capsule.Radius));

            bestFrac = MathHelper.Min(sideFrac, originFrac);
            bestFrac = MathHelper.Min(bestFrac, endFrac);

            if (bestFrac <= 1.0f)
            {
                tS = bestFrac;
                return true;
            }

            return false;
        }
        public static bool SegmentTriangleIntersection(out float tS, out float tT0, out float tT1,
            Segment seg, Triangle triangle)
        {
            /// the parameters - if hit then they get copied into the args
            float u, v, t;

            tS = 0;
            tT0 = 0;
            tT1 = 0;

            Vector3 e1 = triangle.Edge0;
            Vector3 e2 = triangle.Edge1;
            Vector3 p = Vector3.Cross(seg.Delta, e2);
            float a = Vector3.Dot(e1, p);
            if (a > -JiggleMath.Epsilon && a < JiggleMath.Epsilon)
                return false;
            float f = 1.0f / a;
            Vector3 s = seg.Origin - triangle.Origin;
            u = f * Vector3.Dot(s, p);
            if (u < 0.0f || u > 1.0f)
                return false;
            Vector3 q = Vector3.Cross(s, e1);
            v = f * Vector3.Dot(seg.Delta, q);
            if (v < 0.0f || (u + v) > 1.0f)
                return false;
            t = f * Vector3.Dot(e2, q);
            if (t < 0.0f || t > 1.0f)
                return false;

            tS = t;
            tT0 = u;
            tT1 = v;
            //if (tS != 0) tS = t;
            //if (tT0 != 0) tT0 = u;
            //if (tT1 != 0) tT1 = v;
            return true;
        }
        public override bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            // move segment into octree space
            seg.Origin = Vector3.TransformCoordinate(seg.Origin, invTransform);
            seg.Delta = Vector3.TransformNormal(seg.Delta, invTransform);

            BoundingBox segBox = BoundingBoxHelper.InitialBox;
            BoundingBoxHelper.AddSegment(seg, ref segBox);

            unsafe
            {
            #if USE_STACKALLOC
                int* potentialTriangles = stackalloc int[MaxLocalStackTris];
                {
            #else
                int[] potTriArray = DetectFunctor.IntStackAlloc();
                fixed (int* potentialTriangles = potTriArray)
                {
            #endif
                    int numTriangles = GetTrianglesIntersectingtAABox(potentialTriangles, DetectFunctor.MaxLocalStackTris, ref segBox);

                    float tv1, tv2;

                    pos = Vector3.Zero;
                    normal = Vector3.Zero;

                    float bestFrac = float.MaxValue;
                    for (int iTriangle = 0; iTriangle < numTriangles; ++iTriangle)
                    {
                        IndexedTriangle meshTriangle = GetTriangle(potentialTriangles[iTriangle]);
                        float thisFrac;
                        Triangle tri = new Triangle(GetVertex(meshTriangle.GetVertexIndex(0)),
                          GetVertex(meshTriangle.GetVertexIndex(1)),
                          GetVertex(meshTriangle.GetVertexIndex(2)));

                        if (Intersection.SegmentTriangleIntersection(out thisFrac, out tv1, out tv2, seg, tri))
                        {
                            if (thisFrac < bestFrac)
                            {
                                bestFrac = thisFrac;
                                // re-project
                                pos = Vector3.TransformCoordinate(seg.GetPoint(thisFrac), transformMatrix);
                                normal = Vector3.TransformNormal(meshTriangle.Plane.Normal, transformMatrix);
                            }
                        }
                    }

                    frac = bestFrac;
                    if (bestFrac < float.MaxValue)
                    {
                        DetectFunctor.FreeStackAlloc(potTriArray);
                        return true;
                    }
                    else
                    {
                        DetectFunctor.FreeStackAlloc(potTriArray);
                        return false;
                    }
            #if USE_STACKALLOC
                }
            #else
                }
            #endif
            }
        }
 public static bool SegmentPlaneIntersection(out float tS, Segment seg, Plane plane)
 {
     float denom = Vector3.Dot(plane.Normal, seg.Delta);
     if (System.Math.Abs(denom) > JiggleMath.Epsilon)
     {
         float t = -(Vector3.Dot(plane.Normal, seg.Origin) + plane.D) / denom;
         if (t < 0.0f || t > 1.0f)
         {
             tS = 0.0f;
             return false;
         }
         tS = t;
         return true;
     }
     else
     {
         // parallel - return false even if it's in the plane
         tS = 0.0f;
         return false;
     }
 }
        public static bool SegmentSphereIntersection(out float ts, Segment seg, Sphere sphere)
        {
            Vector3 r = seg.Delta;
            Vector3 s = seg.Origin - sphere.Position;

            float radiusSq = sphere.Radius * sphere.Radius;
            float rSq = r.LengthSquared();

            ts = float.MaxValue;

            if (rSq < radiusSq)
            {
                // starting inside
                ts = 0.0f;
                return false;
            }

            float sDotr = Vector3.Dot(s, r);
            float sSq = s.LengthSquared();
            float sigma = (sDotr * sDotr) - rSq * (sSq - radiusSq);
            if (sigma < 0.0f)
                return false;
            float sigmaSqrt = (float)System.Math.Sqrt((float)sigma);
            float lambda1 = (-sDotr - sigmaSqrt) / rSq;
            float lambda2 = (-sDotr + sigmaSqrt) / rSq;
            if (lambda1 > 1.0f || lambda2 < 0.0f)
                return false;
            // intersection!
            ts = MathHelper.Max(lambda1, 0.0f);
            return true;
        }
        public override bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            bool result;
            if (result = Intersection.SegmentPlaneIntersection(out frac, seg, this))
            {
                pos = seg.GetPoint(frac);
                normal = this.Normal;
            }
            else
            {
                pos = Vector3.Zero;
                normal = Vector3.Zero;
            }

            return result;
        }
        public static bool SegmentInfiniteCylinderIntersection(out float tS, Segment seg, Segment cylinderAxis, float radius)
        {
            Vector3 Ks = seg.Delta;
            float kss = Vector3.Dot(Ks, Ks);
            float radiusSq = radius * radius;

            Vector3 Ke = cylinderAxis.Delta;
            Vector3 Kg = cylinderAxis.Origin - seg.Origin;

            tS = 0.0f;

            float kee = Vector3.Dot(Ke, Ke);
            if (System.Math.Abs(kee) < JiggleMath.Epsilon)
                return false;

            float kes = Vector3.Dot(Ke, Ks);
            float kgs = Vector3.Dot(Kg, Ks);
            float keg = Vector3.Dot(Ke, Kg);
            float kgg = Vector3.Dot(Kg, Kg);

            // check if start is inside
            float distSq = (Kg - (keg * Ke) / kee).LengthSquared();
            if (distSq < radiusSq)
                return true;

            // a * t^2 + b * t + c = 0
            float a = kee * kss - kes * kes;
            if (System.Math.Abs(a) < JiggleMath.Epsilon)
                return false;

            float b = 2.0f * (keg * kes - kee * kgs);
            float c = kee * (kgg - radiusSq) - keg * keg;

            float blah = b * b - 4.0f * a * c;
            if (blah < 0.0f)
                return false;

            // solve for t - take minimum
            float t = (-b - (float)System.Math.Sqrt((float)blah)) / (2.0f * a);

            if (t < 0.0f || t > 1.0f)
                return false;

            tS = t;

            return true;
        }
 /// <summary>
 /// Intersect a segment with the world. If non-zero the predicate
 /// allows certain skins to be excluded
 /// </summary>
 /// <param name="seg"></param>
 /// <param name="collisionPredicate"></param>
 /// <returns></returns>
 public abstract bool SegmentIntersect(out float fracOut, out CollisionSkin skinOut, out Vector3 posOut, out Vector3 normalOut,
     Segment seg, CollisionSkinPredicate1 collisionPredicate);
        public override bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            bool result = Intersection.SegmentCapsuleIntersection(out frac, seg, this);

            if (result)
            {
                Vector3 orientationBackward = MatrixHelper.GetBackward(transform.Orientation);

                pos = seg.GetPoint(frac);
                normal = pos - transform.Position;
                normal -= Vector3.Dot(normal, orientationBackward) * orientationBackward;
                JiggleMath.NormalizeSafe(ref normal);
            }
            else
            {
                pos = normal = Vector3.Zero;
            }

            return result;
        }
        /// <summary>
        /// GetBoxTriangleIntersectionPoints
        /// Pushes intersection points onto the back of pts. Returns the
        /// number of points found.
        /// Points that are close together (compared to 
        /// combinationDistance) get combined
        /// </summary>
        /// <param name="pts"></param>
        /// <param name="box"></param>
        /// <param name="triangle"></param>
        /// <param name="combinationDistance"></param>
        /// <returns></returns>
        private static int GetBoxTriangleIntersectionPoints(List<Vector3> pts, Box box, Triangle triangle, float combinationDistance)
        {
            // first intersect each edge of the box with the triangle
            Box.Edge[] edges;
            box.GetEdges(out edges);
            Vector3[] boxPts;
            box.GetCornerPoints(out boxPts);

            float tS;
            float tv1, tv2;

            int iEdge;
            for (iEdge = 0; iEdge < 12; ++iEdge)
            {
                Box.Edge edge = edges[iEdge];
                Segment seg = new Segment(boxPts[(int)edge.Ind0], boxPts[(int)edge.Ind1] - boxPts[(int)edge.Ind0]);
                if (Intersection.SegmentTriangleIntersection(out tS, out tv1, out tv2, seg, triangle))
                {
                     AddPoint(pts, seg.GetPoint(tS), combinationDistance * combinationDistance);
                }
            }

            Vector3 pos, n;
            // now each edge of the triangle with the box
            for (iEdge = 0; iEdge < 3; ++iEdge)
            {
                Vector3 pt0 = triangle.GetPoint(iEdge);
                Vector3 pt1 = triangle.GetPoint((iEdge + 1) % 3);
                Segment s1 = new Segment(pt0, pt1 - pt0);
                Segment s2 = new Segment(pt1, pt0 - pt1);
                if (box.SegmentIntersect(out tS, out pos, out n, s1))
                    AddPoint(pts, pos, combinationDistance * combinationDistance);
                if (box.SegmentIntersect(out tS, out pos, out n, s2))
                    AddPoint(pts, pos, combinationDistance * combinationDistance);
            }

            return pts.Count;
        }
        /// <summary>
        /// 
        /// </summary>
        /// <param name="infoOrig"></param>
        /// <param name="collTolerance"></param>
        /// <param name="collisionFunctor"></param>
        public override void CollDetect(CollDetectInfo infoOrig, float collTolerance, CollisionFunctor collisionFunctor)
        {
            // get the skins in the order that we're expectiing
            CollDetectInfo info = infoOrig;
            if (info.Skin0.GetPrimitiveOldWorld(info.IndexPrim0).Type == this.Type1)
            {
                CollisionSkin skinSwap = info.Skin0;
                info.Skin0 = info.Skin1;
                info.Skin1 = skinSwap;
                int primSwap = info.IndexPrim0;
                info.IndexPrim0 = info.IndexPrim1;
                info.IndexPrim1 = primSwap;
            }

            Vector3 body0Pos = (info.Skin0.Owner != null) ? info.Skin0.Owner.OldPosition : Vector3.Zero;
            Vector3 body1Pos = (info.Skin1.Owner != null) ? info.Skin1.Owner.OldPosition : Vector3.Zero;

            // todo - proper swept test
            Capsule oldCapsule = info.Skin0.GetPrimitiveOldWorld(info.IndexPrim0) as Capsule;
            Capsule newCapsule = info.Skin0.GetPrimitiveNewWorld(info.IndexPrim0) as Capsule;
            Segment oldSeg = new Segment(oldCapsule.Position, oldCapsule.Length * MatrixHelper.GetBackward(oldCapsule.Orientation));
            Segment newSeg = new Segment(newCapsule.Position, newCapsule.Length * MatrixHelper.GetBackward(newCapsule.Orientation));

            float radius = oldCapsule.Radius;

            Box oldBox = info.Skin1.GetPrimitiveOldWorld(info.IndexPrim1) as Box;
            Box newBox = info.Skin1.GetPrimitiveNewWorld(info.IndexPrim1) as Box;

            float oldSegT;
            float oldBoxT0, oldBoxT1, oldBoxT2;
            float oldDistSq = Distance.SegmentBoxDistanceSq(out oldSegT, out oldBoxT0, out oldBoxT1, out oldBoxT2,oldSeg, oldBox);
            float newSegT;
            float newBoxT0, newBoxT1, newBoxT2;
            float newDistSq = Distance.SegmentBoxDistanceSq(out newSegT, out newBoxT0, out newBoxT1, out newBoxT2,newSeg, newBox);

            if (MathHelper.Min(oldDistSq, newDistSq) < ((radius + collTolerance) * (radius + collTolerance)))
            {
                Matrix oldBoxOrientation = oldBox.Orientation;
                Vector3 segPos = oldSeg.GetPoint(oldSegT);
                Vector3 boxPos = oldBox.GetCentre() + oldBoxT0 * MatrixHelper.GetRight(ref oldBoxOrientation) +
                    oldBoxT1 * MatrixHelper.GetUp(ref oldBoxOrientation) + oldBoxT2 * MatrixHelper.GetBackward(ref oldBoxOrientation);

                float dist = (float)System.Math.Sqrt((float)oldDistSq);
                float depth = radius - dist;

                Vector3 dir;

                if (dist > JiggleMath.Epsilon)
                {
                    dir = segPos - boxPos;
                    JiggleMath.NormalizeSafe(ref dir);
                }
                else if ((segPos - oldBox.GetCentre()).LengthSquared() > JiggleMath.Epsilon)
                {
                    dir = segPos - oldBox.GetCentre();
                    JiggleMath.NormalizeSafe(ref dir);
                }
                else
                {
                    // todo - make this not random
                    dir = Vector3.TransformCoordinate(Vector3Helper.Backward, Matrix.RotationAxis(Vector3Helper.Up, MathHelper.ToRadians(random.Next(360))));
                }

                unsafe
                {
                    SmallCollPointInfo collInfo = new SmallCollPointInfo(boxPos - body0Pos, boxPos - body1Pos, depth);

                    collisionFunctor.CollisionNotify(ref info, ref dir, &collInfo, 1);
                }

            }
        }
 /// <summary>
 /// Must support intersection with a segment (ray cast)
 /// </summary>
 /// <param name="frac"></param>
 /// <param name="normal"></param>
 /// <param name="seg"></param>
 /// <returns></returns>
 public abstract bool SegmentIntersect(out float frac,out Vector3 pos,
     out Vector3 normal,Segment seg);
        /// <summary> // TODO teting testing testing ...
        /// Adds the forces die to this wheel to the parent. Return value indicates if it's
        /// on the ground.
        /// </summary>
        /// <param name="dt"></param>
        public bool AddForcesToCar(float dt)
        {
            Vector3 force = Vector3.Zero;
            lastDisplacement = displacement;
            displacement = 0.0f;

            Body carBody = car.Chassis.Body;

            Vector3 worldPos = carBody.Position + Vector3.TransformCoordinate(pos, carBody.Orientation);// *mPos;
            Vector3 worldAxis = Vector3.TransformCoordinate(axisUp, carBody.Orientation);// *mAxisUp;

            //Vector3 wheelFwd = RotationMatrix(mSteerAngle, worldAxis) * carBody.Orientation.GetCol(0);
            // OpenGl has differnet row/column order for matrixes than XNA has ..
            Vector3 wheelFwd = Vector3.TransformCoordinate(MatrixHelper.GetRight(carBody.Orientation), JiggleMath.RotationMatrix(steerAngle, worldAxis));
            //Vector3 wheelFwd = RotationMatrix(mSteerAngle, worldAxis) * carBody.GetOrientation().GetCol(0);
            Vector3 wheelUp = worldAxis;
            Vector3 wheelLeft = Vector3.Cross(wheelUp, wheelFwd);
            wheelLeft.Normalize();

            wheelUp = Vector3.Cross(wheelFwd, wheelLeft);

            // start of ray
            float rayLen = 2.0f * radius + travel;
            Vector3 wheelRayEnd = worldPos - radius * worldAxis;
            Segment wheelRay = new Segment(wheelRayEnd + rayLen * worldAxis, -rayLen * worldAxis);

            //Assert(PhysicsSystem.CurrentPhysicsSystem);
            CollisionSystem collSystem = PhysicsSystem.CurrentPhysicsSystem.CollisionSystem;

            ///Assert(collSystem);
            int numRaysUse = System.Math.Min(numRays, maxNumRays);

            // adjust the start position of the ray - divide the wheel into numRays+2
            // rays, but don't use the first/last.
            float deltaFwd = (2.0f * radius) / (numRaysUse + 1);
            float deltaFwdStart = deltaFwd;

            lastOnFloor = false;
            int bestIRay = 0;
            int iRay;

            for (iRay = 0; iRay < numRaysUse; ++iRay)
            {
                fracs[iRay] = float.MaxValue; //SCALAR_HUGE;
                // work out the offset relative to the middle ray
                float distFwd = (deltaFwdStart + iRay * deltaFwd) - radius;
                //float zOffset = mRadius * (1.0f - CosDeg(90.0f * (distFwd / mRadius)));
                float zOffset = radius * (1.0f - (float)System.Math.Cos( MathHelper.ToRadians( 90.0f * (distFwd / radius))));

                segments[iRay] = wheelRay;
                segments[iRay].Origin += distFwd * wheelFwd + zOffset * wheelUp;

                if (collSystem.SegmentIntersect(out fracs[iRay], out otherSkins[iRay],
                                                 out groundPositions[iRay], out groundNormals[iRay], segments[iRay], pred))
                {
                    lastOnFloor = true;

                    if (fracs[iRay] < fracs[bestIRay])
                        bestIRay = iRay;
                }
            }

            if (!lastOnFloor)
                return false;

            //Assert(bestIRay < numRays);

            // use the best one
            Vector3 groundPos = groundPositions[bestIRay];
            float frac = fracs[bestIRay];
            CollisionSkin otherSkin = otherSkins[bestIRay];

            //  const Vector3 groundNormal = (worldPos - segments[bestIRay].GetEnd()).NormaliseSafe();
            //  const Vector3 groundNormal = groundNormals[bestIRay];

            Vector3 groundNormal = worldAxis;

            if (numRaysUse > 1)
            {
                for (iRay = 0; iRay < numRaysUse; ++iRay)
                {
                    if (fracs[iRay] <= 1.0f)
                    {
                        groundNormal += (1.0f - fracs[iRay]) * (worldPos - segments[iRay].GetEnd());
                    }
                }

                JiggleMath.NormalizeSafe(ref groundNormal);
            }
            else
            {
                groundNormal = groundNormals[bestIRay];
            }

            //Assert(otherSkin);
            Body worldBody = otherSkin.Owner;

            displacement = rayLen * (1.0f - frac);
            displacement = MathHelper.Clamp(displacement, 0, travel);

            float displacementForceMag = displacement * spring;

            // reduce force when suspension is par to ground
            displacementForceMag *= Vector3.Dot(groundNormals[bestIRay], worldAxis);

            // apply damping
            float dampingForceMag = upSpeed * damping;

            float totalForceMag = displacementForceMag + dampingForceMag;

            if (totalForceMag < 0.0f) totalForceMag = 0.0f;

            Vector3 extraForce = totalForceMag * worldAxis;

            force += extraForce;

            // side-slip friction and drive force. Work out wheel- and floor-relative coordinate frame
            Vector3 groundUp = groundNormal;
            Vector3 groundLeft = Vector3.Cross(groundNormal, wheelFwd);
            JiggleMath.NormalizeSafe(ref groundLeft);

            Vector3 groundFwd = Vector3.Cross(groundLeft, groundUp);

            Vector3 wheelPointVel = carBody.Velocity +
                                    Vector3.Cross(carBody.AngularVelocity, Vector3.TransformCoordinate( pos, carBody.Orientation));// * mPos);

            Vector3 rimVel = angVel * Vector3.Cross(wheelLeft, groundPos - worldPos);
            wheelPointVel += rimVel;

            // if sitting on another body then adjust for its velocity.
            if (worldBody != null)
            {
                Vector3 worldVel = worldBody.Velocity +
                 Vector3.Cross(worldBody.AngularVelocity, groundPos - worldBody.Position);

                wheelPointVel -= worldVel;
            }

            // sideways forces
            float noslipVel = 0.2f;
            float slipVel = 0.4f;
            float slipFactor = 0.7f;

            float smallVel = 3;
            float friction = sideFriction;

            float sideVel = Vector3.Dot(wheelPointVel, groundLeft);

            if ((sideVel > slipVel) || (sideVel < -slipVel))
                friction *= slipFactor;
            else
                if ((sideVel > noslipVel) || (sideVel < -noslipVel))
                    friction *= 1.0f - (1.0f - slipFactor) * (System.Math.Abs(sideVel) - noslipVel) / (slipVel - noslipVel);

            if (sideVel < 0.0f)
                friction *= -1.0f;

            if (System.Math.Abs(sideVel) < smallVel)
                friction *= System.Math.Abs(sideVel) / smallVel;

            float sideForce = -friction * totalForceMag;

            extraForce = sideForce * groundLeft;
            force += extraForce;

            // fwd/back forces
            friction = fwdFriction;
            float fwdVel = Vector3.Dot(wheelPointVel, groundFwd);

            if ((fwdVel > slipVel) || (fwdVel < -slipVel))
                friction *= slipFactor;
            else
                if ((fwdVel > noslipVel) || (fwdVel < -noslipVel))
                    friction *= 1.0f - (1.0f - slipFactor) * (System.Math.Abs(fwdVel) - noslipVel) / (slipVel - noslipVel);

            if (fwdVel < 0.0f)
                friction *= -1.0f;

            if (System.Math.Abs(fwdVel) < smallVel)
                friction *= System.Math.Abs(fwdVel) / smallVel;

            float fwdForce = -friction * totalForceMag;

            extraForce = fwdForce * groundFwd;
            force += extraForce;

            //if (!force.IsSensible())
            //{
            //  TRACE_FILE_IF(ONCE_1)
            //    TRACE("Bad force in car wheel\n");
            //  return true;
            //}

            // fwd force also spins the wheel
            Vector3 wheelCentreVel = carBody.Velocity +
                                     Vector3.Cross(carBody.AngularVelocity, Vector3.TransformCoordinate(pos, carBody.Orientation));// * mPos);

            angVelForGrip = Vector3.Dot(wheelCentreVel, groundFwd) / radius;
            torque += -fwdForce * radius;

            // add force to car
            carBody.AddWorldForce(force, groundPos);

            //if (float.IsNaN(force.X))
            //    while(true){}
            //System.Diagnostics.Debug.WriteLine(force.ToString());

            // add force to the world
            if (worldBody != null && !worldBody.Immovable)
            {
                // todo get the position in the right place...
                // also limit the velocity that this force can produce by looking at the
                // mass/inertia of the other object
                float maxOtherBodyAcc = 500.0f;
                float maxOtherBodyForce = maxOtherBodyAcc * worldBody.Mass;

                if (force.LengthSquared() > (maxOtherBodyForce * maxOtherBodyForce))
                    force *= maxOtherBodyForce / force.Length();

                worldBody.AddWorldForce(-force, groundPos);
            }
            return true;
        }
        /// <summary>
        /// Every skin must support a ray/segment intersection test -
        /// operates on the new value of the primitives
        /// </summary>
        /// <param name="frac"></param>
        /// <param name="pos"></param>
        /// <param name="normal"></param>
        /// <param name="seg"></param>
        /// <returns></returns>
        public bool SegmentIntersect(out float frac, out Vector3 pos, out Vector3 normal, Segment seg)
        {
            Vector3 segEnd = seg.GetEnd();
            frac = float.MaxValue;

            float thisSegLenRelToOrig = 1.0f;
            Segment segCopy = seg;

            pos = normal = Vector3.Zero;

            for (int prim = primitivesNewWorld.Count; prim-- != 0; )
            {
                float thisFrac;
                Vector3 newPosition = pos;

                if (primitivesNewWorld[prim].SegmentIntersect(out thisFrac, out newPosition, out normal, segCopy))
                {
                    pos = newPosition;
                    frac = thisFrac * thisSegLenRelToOrig;
                    segCopy.Delta *= thisFrac;
                    thisSegLenRelToOrig *= frac;
                }
            }

            //System.Diagnostics.Debug.WriteLineIf(frac <= 1.0f, pos);

            return (frac <= 1.0f);
        }
        public override bool SegmentIntersect(out float fracOut, out Vector3 posOut, out Vector3 normalOut, Segment seg)
        {
            fracOut = float.MaxValue;
            posOut = normalOut = Vector3.Zero;

            // algo taken from p674 of realting rendering
            // needs debugging
            float min = float.MinValue;
            float max = float.MaxValue;

            Vector3 p = GetCentre() - seg.Origin;
            Vector3 h;
            h.X = sideLengths.X * 0.5f;
            h.Y = sideLengths.Y * 0.5f;
            h.Z = sideLengths.Z * 0.5f;

            int dirMax = 0;
            int dirMin = 0;
            int dir = 0;

            Matrix orientation = transform.Orientation;
            Vector3[] matrixVec = new Vector3[3];

            MatrixHelper.GetRight(ref orientation, out matrixVec[0]);      //matrixVec[0] = transform.Orientation.Right;
            MatrixHelper.GetUp(ref orientation, out matrixVec[1]);         //matrixVec[1] = transform.Orientation.Up;
            MatrixHelper.GetBackward(ref orientation, out matrixVec[2]);   //matrixVec[2] = transform.Orientation.Backward;

            float[] vectorFloat = new float[3];
            vectorFloat[0] = h.X;
            vectorFloat[1] = h.Y;
            vectorFloat[2] = h.Z;

            for (dir = 0; dir < 3; dir++)
            {
                float e = Vector3.Dot(matrixVec[dir], p);
                float f = Vector3.Dot(matrixVec[dir], seg.Delta);

                if (System.Math.Abs(f) > JiggleMath.Epsilon)
                {
                    float t1 = (e + vectorFloat[dir]) / f;
                    float t2 = (e - vectorFloat[dir]) / f;

                    if (t1 > t2){float tmp = t1;t1 = t2; t2 = tmp;}

                    if (t1 > min)
                    {
                        min = t1;
                        dirMin = dir;
                    }
                    if (t2 < max)
                    {
                        max = t2;
                        dirMax = dir;
                    }

                    if (min > max)
                        return false;

                    if (max < 0.0f)
                        return false;
                }
                else if((-e-vectorFloat[dir] > 0.0f) ||
                    (-e + vectorFloat[dir] < 0.0f))
                {
                    return false;
                }
            }

            if (min > 0.0f)
            {
                dir = dirMin;
                fracOut = min;
            }
            else
            {
                dir = dirMax;
                fracOut = max;
            }

            fracOut = MathHelper.Clamp(fracOut, 0.0f, 1.0f);
            posOut = seg.GetPoint(fracOut);
            if (Vector3.Dot(matrixVec[dir], seg.Delta) > 0.0f)
                normalOut = -matrixVec[dir];
            else
                normalOut = matrixVec[dir];

            return true;
        }
        public override bool SegmentIntersect(out float fracOut,out CollisionSkin skinOut,out Vector3 posOut,out Vector3 normalOut, Segment seg, CollisionSkinPredicate1 collisionPredicate)
        {
            int numSkins = skins.Count;
            BoundingBox segBox = BoundingBoxHelper.InitialBox;
            BoundingBoxHelper.AddSegment(seg, ref segBox);

            //initialise the outputs
            fracOut = float.MaxValue;
            skinOut = null;
            posOut = normalOut = Vector3.Zero;

            // working vars
            float frac;
            Vector3 pos;
            Vector3 normal;

            for (int iskin = 0; iskin < numSkins; ++iskin)
            {
                CollisionSkin skin = skins[iskin];
                if ((collisionPredicate == null) ||
                    collisionPredicate.ConsiderSkin(skin))
                {
                    // basic bbox test
                    if (BoundingBoxHelper.OverlapTest(ref skin.WorldBoundingBox, ref segBox))
                    {
                        if (skin.SegmentIntersect(out frac, out pos, out normal, seg))
                        {
                            if (frac < fracOut)
                            {
                                posOut = pos;
                                normalOut = normal;
                                skinOut = skin;
                                fracOut = frac;
                            }
                        }

                    }
                }
            }

            if (fracOut > 1.0f) return false;
            fracOut = MathHelper.Clamp(fracOut, 0.0f, 1.0f);
            return true;
        }