internal static void inplaceShiftRight(BigInteger val, int count) { int sign = val.signum(); if (count == 0 || val.signum() == 0) { return; } int intCount = count >> 5; // count of integers val.numberLength -= intCount; if (!shiftRight(val.digits, val.numberLength, val.digits, intCount, count & 31) && sign < 0) { // remainder not zero: add one to the result int i; for (i = 0; (i < val.numberLength) && (val.digits[i] == -1); i++) { val.digits[i] = 0; } if (i == val.numberLength) { val.numberLength++; } val.digits[i]++; } val.cutOffLeadingZeroes(); val.unCache(); }
public BigInteger gcd(BigInteger val) { BigInteger val1 = this.abs(); BigInteger val2 = val.abs(); // To avoid a possible division by zero if (val1.signum() == 0) { return(val2); } else if (val2.signum() == 0) { return(val1); } // Optimization for small operands // (op2.bitLength() < 64) and (op1.bitLength() < 64) if (((val1.numberLength == 1) || ((val1.numberLength == 2) && (val1.digits[1] > 0))) && (val2.numberLength == 1 || (val2.numberLength == 2 && val2.digits[1] > 0))) { return(BigInteger.valueOf(Division.gcdBinary(val1.longValue(), val2 .longValue()))); } return(Division.gcdBinary(val1.copy(), val2.copy())); }
internal static void inplaceShiftRight(BigInteger val, int count) { int sign = val.signum(); if (count == 0 || val.signum() == 0) return; int intCount = count >> 5; // count of integers val.numberLength -= intCount; if (!shiftRight(val.digits, val.numberLength, val.digits, intCount, count & 31) && sign < 0) { // remainder not zero: add one to the result int i; for (i = 0; ( i < val.numberLength ) && ( val.digits[i] == -1 ); i++) { val.digits[i] = 0; } if (i == val.numberLength) { val.numberLength++; } val.digits[i]++; } val.cutOffLeadingZeroes(); val.unCache(); }
internal static BigInteger modInverseLorencz(BigInteger a, BigInteger modulo) { int max = Math.Max(a.numberLength, modulo.numberLength); int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation int[] vDigits = new int[max + 1]; Array.Copy(modulo.digits, uDigits, modulo.numberLength); Array.Copy(a.digits, vDigits, a.numberLength); BigInteger u = new BigInteger(modulo.sign, modulo.numberLength, uDigits); BigInteger v = new BigInteger(a.sign, a.numberLength, vDigits); BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO; BigInteger s = new BigInteger(1, 1, new int[max + 1]); s.digits[0] = 1; // r == 0 && s == 1, but with enough place int coefU = 0, coefV = 0; int n = modulo.bitLength(); int k; while (!isPowerOfTwo(u, coefU) && !isPowerOfTwo(v, coefV)) { // modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if k = howManyIterations(u, n); if (k != 0) { BitLevel.inplaceShiftLeft(u, k); if (coefU >= coefV) { BitLevel.inplaceShiftLeft(r, k); } else { BitLevel.inplaceShiftRight(s, Math.Min(coefV - coefU, k)); if (k - ( coefV - coefU ) > 0) { BitLevel.inplaceShiftLeft(r, k - coefV + coefU); } } coefU += k; } k = howManyIterations(v, n); if (k != 0) { BitLevel.inplaceShiftLeft(v, k); if (coefV >= coefU) { BitLevel.inplaceShiftLeft(s, k); } else { BitLevel.inplaceShiftRight(r, Math.Min(coefU - coefV, k)); if (k - ( coefU - coefV ) > 0) { BitLevel.inplaceShiftLeft(s, k - coefU + coefV); } } coefV += k; } if (u.signum() == v.signum()) { if (coefU <= coefV) { Elementary.completeInPlaceSubtract(u, v); Elementary.completeInPlaceSubtract(r, s); } else { Elementary.completeInPlaceSubtract(v, u); Elementary.completeInPlaceSubtract(s, r); } } else { if (coefU <= coefV) { Elementary.completeInPlaceAdd(u, v); Elementary.completeInPlaceAdd(r, s); } else { Elementary.completeInPlaceAdd(v, u); Elementary.completeInPlaceAdd(s, r); } } if (v.signum() == 0 || u.signum() == 0){ throw new ArithmeticException("BigInteger not invertible"); } } if (isPowerOfTwo(v, coefV)) { r = s; if (v.signum() != u.signum()) u = u.negate(); } if (u.testBit(n)) { if (r.signum() < 0) { r = r.negate(); } else { r = modulo.subtract(r); } } if (r.signum() < 0) { r = r.add(modulo); } return r; }
internal static BigInteger gcdBinary(BigInteger op1, BigInteger op2) { // PRE: (op1 > 0) and (op2 > 0) /* * Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b) */ int lsb1 = op1.getLowestSetBit(); int lsb2 = op2.getLowestSetBit(); int pow2Count = Math.Min(lsb1, lsb2); BitLevel.inplaceShiftRight(op1, lsb1); BitLevel.inplaceShiftRight(op2, lsb2); BigInteger swap; // I want op2 > op1 if (op1.compareTo(op2) == BigInteger.GREATER) { swap = op1; op1 = op2; op2 = swap; } do { // INV: op2 >= op1 && both are odd unless op1 = 0 // Optimization for small operands // (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64) if (( op2.numberLength == 1 ) || ( ( op2.numberLength == 2 ) && ( op2.digits[1] > 0 ) )) { op2 = BigInteger.valueOf(Division.gcdBinary(op1.longValue(), op2.longValue())); break; } // Implements one step of the Euclidean algorithm // To reduce one operand if it's much smaller than the other one if (op2.numberLength > op1.numberLength * 1.2) { op2 = op2.remainder(op1); if (op2.signum() != 0) { BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); } } else { // Use Knuth's algorithm of successive subtract and shifting do { Elementary.inplaceSubtract(op2, op1); // both are odd BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); // op2 is even } while (op2.compareTo(op1) >= BigInteger.EQUALS); } // now op1 >= op2 swap = op2; op2 = op1; op1 = swap; } while (op1.sign != 0); return op2.shiftLeft(pow2Count); }
internal static BigInteger modInverseLorencz(BigInteger a, BigInteger modulo) { int max = Math.Max(a.numberLength, modulo.numberLength); int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation int[] vDigits = new int[max + 1]; Array.Copy(modulo.digits, uDigits, modulo.numberLength); Array.Copy(a.digits, vDigits, a.numberLength); BigInteger u = new BigInteger(modulo.sign, modulo.numberLength, uDigits); BigInteger v = new BigInteger(a.sign, a.numberLength, vDigits); BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO; BigInteger s = new BigInteger(1, 1, new int[max + 1]); s.digits[0] = 1; // r == 0 && s == 1, but with enough place int coefU = 0, coefV = 0; int n = modulo.bitLength(); int k; while (!isPowerOfTwo(u, coefU) && !isPowerOfTwo(v, coefV)) { // modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if k = howManyIterations(u, n); if (k != 0) { BitLevel.inplaceShiftLeft(u, k); if (coefU >= coefV) { BitLevel.inplaceShiftLeft(r, k); } else { BitLevel.inplaceShiftRight(s, Math.Min(coefV - coefU, k)); if (k - (coefV - coefU) > 0) { BitLevel.inplaceShiftLeft(r, k - coefV + coefU); } } coefU += k; } k = howManyIterations(v, n); if (k != 0) { BitLevel.inplaceShiftLeft(v, k); if (coefV >= coefU) { BitLevel.inplaceShiftLeft(s, k); } else { BitLevel.inplaceShiftRight(r, Math.Min(coefU - coefV, k)); if (k - (coefU - coefV) > 0) { BitLevel.inplaceShiftLeft(s, k - coefU + coefV); } } coefV += k; } if (u.signum() == v.signum()) { if (coefU <= coefV) { Elementary.completeInPlaceSubtract(u, v); Elementary.completeInPlaceSubtract(r, s); } else { Elementary.completeInPlaceSubtract(v, u); Elementary.completeInPlaceSubtract(s, r); } } else { if (coefU <= coefV) { Elementary.completeInPlaceAdd(u, v); Elementary.completeInPlaceAdd(r, s); } else { Elementary.completeInPlaceAdd(v, u); Elementary.completeInPlaceAdd(s, r); } } if (v.signum() == 0 || u.signum() == 0) { throw new ArithmeticException("BigInteger not invertible"); } } if (isPowerOfTwo(v, coefV)) { r = s; if (v.signum() != u.signum()) { u = u.negate(); } } if (u.testBit(n)) { if (r.signum() < 0) { r = r.negate(); } else { r = modulo.subtract(r); } } if (r.signum() < 0) { r = r.add(modulo); } return(r); }
internal static BigInteger gcdBinary(BigInteger op1, BigInteger op2) { // PRE: (op1 > 0) and (op2 > 0) /* * Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b) */ int lsb1 = op1.getLowestSetBit(); int lsb2 = op2.getLowestSetBit(); int pow2Count = Math.Min(lsb1, lsb2); BitLevel.inplaceShiftRight(op1, lsb1); BitLevel.inplaceShiftRight(op2, lsb2); BigInteger swap; // I want op2 > op1 if (op1.compareTo(op2) == BigInteger.GREATER) { swap = op1; op1 = op2; op2 = swap; } do // INV: op2 >= op1 && both are odd unless op1 = 0 // Optimization for small operands // (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64) { if ((op2.numberLength == 1) || ((op2.numberLength == 2) && (op2.digits[1] > 0))) { op2 = BigInteger.valueOf(Division.gcdBinary(op1.longValue(), op2.longValue())); break; } // Implements one step of the Euclidean algorithm // To reduce one operand if it's much smaller than the other one if (op2.numberLength > op1.numberLength * 1.2) { op2 = op2.remainder(op1); if (op2.signum() != 0) { BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); } } else { // Use Knuth's algorithm of successive subtract and shifting do { Elementary.inplaceSubtract(op2, op1); // both are odd BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); // op2 is even } while (op2.compareTo(op1) >= BigInteger.EQUALS); } // now op1 >= op2 swap = op2; op2 = op1; op1 = swap; } while (op1.sign != 0); return(op2.shiftLeft(pow2Count)); }
private static BigDecimal divideBigIntegers(BigInteger scaledDividend, BigInteger scaledDivisor, int scale, RoundingMode roundingMode) { BigInteger[] quotAndRem = scaledDividend.divideAndRemainder(scaledDivisor); // quotient and remainder // If after division there is a remainder... BigInteger quotient = quotAndRem[0]; BigInteger remainder = quotAndRem[1]; if (remainder.signum() == 0) { return new BigDecimal(quotient, scale); } int sign = scaledDividend.signum() * scaledDivisor.signum(); int compRem; // 'compare to remainder' if(scaledDivisor.bitLength() < 63) { // 63 in order to avoid out of long after <<1 long rem = remainder.longValue(); long divisor = scaledDivisor.longValue(); compRem = longCompareTo(Math.Abs(rem) << 1,Math.Abs(divisor)); // To look if there is a carry compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } else { // Checking if: remainder * 2 >= scaledDivisor compRem = remainder.abs().shiftLeftOneBit().compareTo(scaledDivisor.abs()); compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } if (compRem != 0) { if(quotient.bitLength() < 63) { return valueOf(quotient.longValue() + compRem,scale); } quotient = quotient.add(BigInteger.valueOf(compRem)); return new BigDecimal(quotient, scale); } // Constructing the result with the appropriate unscaled value return new BigDecimal(quotient, scale); }