/// <summary>
        /// check that algorithm computes either the topological order or finds a directed cycle
        /// </summary>
        /// <param name="g"></param>
        /// <param name="v"></param>
        private void dfs(EdgeWeightedDigraph g, int v)
        {
            onStack[v] = true;
            marked[v]  = true;
            foreach (DirectedEdge e in g.Adj(v))
            {
                int w = e.To();

                //short circuit if directed cycle found
                if (cycle != null)
                {
                    return;
                }
                else if (!marked[v]) //found new vertex
                {
                    edgeTo[w] = e;
                    dfs(g, w);
                }
                // trace back directed cycle
                else if (onStack[w])
                {
                    cycle = new Stack <DirectedEdge>();
                    DirectedEdge de = e;
                    while (de.From() != w)
                    {
                        cycle.Push(de);
                        de = edgeTo[de.From()];
                    }
                    cycle.Push(de);
                }
            }
            onStack[v] = false;
        }
示例#2
0
        public static double Cpm(List <Job> jobs)
        {
            //the jobs id start from 0 to n-1
            int n = jobs.Count;

            for (int i = 0; i < n; i++)
            {
                jobs[i].JobID = i;
            }
            //source and sink vertex
            int source = 2 * n;
            int sink   = 2 * n + 1;

            //build network
            EdgeWeightedDigraph g = new EdgeWeightedDigraph(2 * n + 2);

            for (int i = 0; i < n; i++)
            {
                g.AddEdge(new DirectedEdge(source, i, 0));
                g.AddEdge(new DirectedEdge(i + n, sink, 0));
                g.AddEdge(new DirectedEdge(i, i + n, jobs[i].Duration));

                foreach (var job in jobs[i].Constaints)
                {
                    g.AddEdge(new DirectedEdge(job.JobID + n, i, 0));
                }
            }

            //compute longest paths
            AcyclicLP lp = new AcyclicLP(g, source);

            return(lp.DistTo(sink));
        }
 public DijkstraAllPairsSP(EdgeWeightedDigraph g)
 {
     all = new DijkstraSP[g.V];
     for (int v = 0; v < g.V; v++)
     {
         all[v] = new DijkstraSP(g, v);
     }
 }
示例#4
0
        /// <summary>
        /// topological sort in an edge-weighted digraph
        /// </summary>
        /// <param name="g"></param>
        public Topological(EdgeWeightedDigraph g)
        {
            EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(g);

            if (!finder.HasCycle())
            {
                DepthFirstOrder dfs = new DepthFirstOrder(g);
                order = dfs.ReversePost();
            }
        }
        private Stack <DirectedEdge> cycle; // directed cycle (or null if no such cycle)

        public EdgeWeightedDirectedCycle(EdgeWeightedDigraph g)
        {
            marked  = new bool[g.V];
            onStack = new bool[g.V];
            edgeTo  = new DirectedEdge[g.V];

            for (int v = 0; v < g.V; v++)
            {
                if (!marked[v])
                {
                    dfs(g, v);
                }
            }
        }
示例#6
0
        /// <summary>
        /// depth-first search preorder and postorder in an edge-weighted digraph
        /// </summary>
        /// <param name="g"></param>
        public DepthFirstOrder(EdgeWeightedDigraph g)
        {
            pre       = new int[g.V];
            post      = new int[g.V];
            postorder = new Queue <int>();
            preorder  = new Queue <int>();
            marked    = new bool[g.V];

            for (int v = 0; v < g.V; v++)
            {
                if (!marked[v])
                {
                    dfs(g, v);
                }
            }
        }
        /// <summary>
        /// by finding a cycle in predecessor graph
        /// </summary>
        private void findNegativeCycle()
        {
            int v = edgeTo.Length;
            EdgeWeightedDigraph spt = new EdgeWeightedDigraph(v);

            for (int w = 0; w < v; w++)
            {
                if (edgeTo[v] != null)
                {
                    spt.AddEdge(edgeTo[v]);
                }
            }

            EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt);

            cycle = finder.Cycle();
        }
        /// <summary>
        /// copy constructor
        /// </summary>
        /// <param name="g"></param>
        public EdgeWeightedDigraph(EdgeWeightedDigraph g) : this(g.V)
        {
            this.e = g.e;

            for (int v = 0; v < g.V; v++)
            {
                // reverse so that adjacency list is in same order as original
                Stack <DirectedEdge> reverse = new Stack <DirectedEdge>();
                foreach (DirectedEdge directedEdge in g.adj[v])
                {
                    reverse.Push(directedEdge);
                }

                foreach (DirectedEdge directedEdge in reverse)
                {
                    adj[v].Add(directedEdge);
                }
            }
        }
示例#9
0
 /// <summary>
 /// run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
 /// </summary>
 /// <param name="g"></param>
 /// <param name="v"></param>
 private void dfs(EdgeWeightedDigraph g, int v)
 {
     if (marked[v])
     {
         return;
     }
     marked[v] = true;
     pre[v]    = preCounter++;
     preorder.Enqueue(v);
     foreach (DirectedEdge e in g.Adj(v))
     {
         int w = e.To();
         if (!marked[w])
         {
             dfs(g, w);
         }
     }
     postorder.Enqueue(v);
     post[v] = postCounter++;
 }
        public AcyclicSP(EdgeWeightedDigraph g, int s)
        {
            distTo = new double[g.V];
            edgeTo = new DirectedEdge[g.V];
            for (int v = 0; v < g.V; v++)
            {
                distTo[v] = double.PositiveInfinity;
            }

            distTo[s] = 0.0;

            //visit vertices in toplogical order
            Topological topological = new Topological(g);

            foreach (int v in topological.Order())
            {
                foreach (DirectedEdge e in g.Adj(v))
                {
                    relax(e);
                }
            }
        }
        /// <summary>
        /// relax vertex v and put other endpoints on queue if changed
        /// </summary>
        /// <param name="g"></param>
        /// <param name="v"></param>
        private void relax(EdgeWeightedDigraph g, int v)
        {
            foreach (DirectedEdge e in g.Adj(v))
            {
                int w = e.To();
                if (distTo[w] > distTo[v] + e.Weight())
                {
                    distTo[w] = distTo[v] + e.Weight();
                    edgeTo[w] = e;
                    if (!onQueue[w])
                    {
                        queue.Enqueue(w);
                        onQueue[w] = true;
                    }
                }

                if (cost++ % g.V == 0)
                {
                    findNegativeCycle();
                }
            }
        }
        public BellmanFordSP(EdgeWeightedDigraph g, int s)
        {
            distTo  = new double[g.V];
            edgeTo  = new DirectedEdge[g.V];
            onQueue = new bool[g.V];
            for (int v = 0; v < g.V; v++)
            {
                distTo[v] = double.PositiveInfinity;
            }

            distTo[s] = 0.0;

            //bellman-ford algorithm
            queue = new Queue <int>();
            queue.Enqueue(s);
            onQueue[s] = true;

            while (!(queue.Count == 0) && !HasNegativeCycle())
            {
                int v = queue.Dequeue();
                onQueue[v] = false;
                relax(g, v);
            }
        }
        /// <summary>
        /// check optimality conditions
        /// (1)for all edge e: distTo[e.to()] <= distTo[e.from()] + e.weight()
        /// (2) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
        /// </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        /// <returns></returns>
        public bool Check(EdgeWeightedDigraph g, int s)
        {
            //check that edge weights are nonnegative
            foreach (DirectedEdge e in g.Adj(s))
            {
                int w = e.To();
                if (e.Weight() < 0)
                {
                    return(false);
                }
            }

            //check that distTo[v] and edgeTo[v] are consistent
            if (System.Math.Abs(distTo[s] - 0.0) > EPSILON || edgeTo[s] != null)
            {
                return(false);
            }

            for (int v = 0; v < g.V; v++)
            {
                if (v == s)
                {
                    continue;
                }

                if (edgeTo[v] == null && distTo[v] != double.PositiveInfinity)
                {
                    return(false);
                }
            }

            //check all edges e = v-->w statisfy distTo[w] <= distTo[v] + e.weight()
            for (int v = 0; v < g.V; v++)
            {
                foreach (var e in g.Adj(v))
                {
                    int w = e.To();
                    if (distTo[v] == double.PositiveInfinity || distTo[w] == double.PositiveInfinity)
                    {
                        continue;
                    }

                    if (distTo[v] + e.Weight() < distTo[w])
                    {
                        return(false);
                    }
                }
            }


            //check that all edge e = v-->w on spt satisfy distTo[w] = distTo[v] + e.weight()
            for (int w = 0; w < g.V; w++)
            {
                if (edgeTo[w] == null)
                {
                    continue;
                }

                DirectedEdge e = edgeTo[w];

                int v = e.From();
                if (w != e.To())
                {
                    return(false);
                }


                if (distTo[v] + e.Weight() != distTo[w])
                {
                    return(false);
                }
            }

            return(true);
        }
        /// <summary>
        /// check optimality conditions:either
        /// (1) there exists a negative cycle reachable from s
        /// (2) for all edges e = v-->w:  distTo[w] &lt;= distTo[v] + e.weight()
        /// (3) for all edges e = v-->w on the SPT: distTo[w] == distTo[v] + e.weight()
        ///  </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        /// <returns></returns>
        public bool Check(EdgeWeightedDigraph g, int s)
        {
            //has a negative cycle
            if (HasNegativeCycle())
            {
                double weight = 0.0;
                foreach (DirectedEdge e in NegativeCycle())
                {
                    weight += e.Weight();
                }

                if (weight >= 0)
                {
                    return(false);
                }
            }
            else
            {
                //no negative cycle reachable from s
                if (distTo[s] != 0.0 || edgeTo[s] != null)
                {
                    return(false);
                }

                for (int v = 0; v < g.V; v++)
                {
                    if (v == s)
                    {
                        continue;
                    }
                    if (edgeTo[v] == null && distTo[v] != double.PositiveInfinity)
                    {
                        return(false);
                    }
                }

                //check that all edges e=v-->w satisfy distTo[w]<=distTo[v]+e.weight()
                for (int v = 0; v < g.V; v++)
                {
                    foreach (var e in g.Adj(v))
                    {
                        int w = e.To();
                        if (distTo[v] + e.Weight() < distTo[w])
                        {
                            return(false);
                        }
                    }
                }

                //check that all edges e = v-->w on spt satisfy distTo[w] == distTo[v] + e.weight()
                for (int w = 0; w < g.V; w++)
                {
                    if (edgeTo[w] == null)
                    {
                        continue;
                    }

                    DirectedEdge e = edgeTo[w];
                    int          v = e.From();
                    if (w != e.To())
                    {
                        return(false);
                    }

                    if (distTo[v] + e.Weight() != distTo[w])
                    {
                        return(false);
                    }
                }
            }

            return(true);
        }