public static uint[] Load(FontParser parser, int offset, int numGlyphs, bool shortVersion) { // Seek there now: parser.Position = offset; // Extra entry is used for computing the length of the last glyph, thus +1. int length = numGlyphs + 1; // Create the output set: uint[] locations = new uint[length]; // For each one.. for (int i = 0; i < length; i++) { if (shortVersion) { locations[i] = (uint)(parser.ReadUInt16() * 2); } else { locations[i] = parser.ReadUInt32(); } } return(locations); }
public static uint[] Load(FontParser parser,int offset,int numGlyphs,bool shortVersion){ // Seek there now: parser.Position=offset; // Extra entry is used for computing the length of the last glyph, thus +1. int length=numGlyphs+1; // Create the output set: uint[] locations=new uint[length]; // For each one.. for(int i=0;i<length;i++){ if(shortVersion){ locations[i]=(uint)(parser.ReadUInt16()*2); }else{ locations[i]=parser.ReadUInt32(); } } return locations; }
public static void Load(FontParser parser, int offset, FontFace font) { // Got OS2: parser.ReadOS2 = true; // Seek: parser.Position = offset; // version int version = parser.ReadUInt16(); // xAvgCharWidth parser.ReadInt16(); // usWeightClass int weight = parser.ReadUInt16(); // usWidthClass parser.ReadUInt16(); // fsType parser.ReadUInt16(); // ySubscriptXSize parser.ReadInt16(); // ySubscriptYSize parser.ReadInt16(); // ySubscriptXOffset parser.ReadInt16(); // ySubscriptYOffset parser.ReadInt16(); // ySuperscriptXSize parser.ReadInt16(); // ySuperscriptYSize parser.ReadInt16(); // ySuperscriptXOffset parser.ReadInt16(); // ySuperscriptYOffset parser.ReadInt16(); // yStrikeoutSize font.StrikeSize = (float)parser.ReadInt16() / font.UnitsPerEmF; // yStrikeoutPosition font.StrikeOffset = (float)parser.ReadInt16() / font.UnitsPerEmF; // sFamilyClass parser.ReadInt16(); // panose: /* * byte panose=new byte[10]; * * for(int i=0;i<10;i++){ * panose[i]=parser.ReadByte(); * } */ parser.Position += 10; // ulUnicodeRange1 parser.ReadUInt32(); // ulUnicodeRange2 parser.ReadUInt32(); // ulUnicodeRange3 parser.ReadUInt32(); // ulUnicodeRange4 parser.ReadUInt32(); // achVendID parser.ReadTag(); // fsSelection int type = parser.ReadUInt16(); bool italic = ((type & 1) == 1); // bool strikeout=((type&16)==16); // bool underscore=((type&2)==2); bool oblique = ((type & 512) == 512); bool bold = ((type & 32) == 32); bool regular = ((type & 64) == 64); bool useTypo = ((type & 128) == 128); if (!bold || regular) { // Must be regular: weight = 400; } else if (weight == 0) { weight = 700; } font.SetFlags(italic || oblique, weight); // usFirstCharIndex parser.ReadUInt16(); // usLastCharIndex parser.ReadUInt16(); // sTypoAscender float ascender = (float)parser.ReadInt16() / font.UnitsPerEmF; // sTypoDescender float descender = (float)parser.ReadInt16() / font.UnitsPerEmF; // sTypoLineGap float lineGap = ((float)parser.ReadInt16() / font.UnitsPerEmF); // usWinAscent float wAscender = (float)parser.ReadUInt16() / font.UnitsPerEmF; // usWinDescent float wDescender = (float)parser.ReadUInt16() / font.UnitsPerEmF; // This is an awkward spec hack due to most windows programs // providing the wrong typo descender values. if (Fonts.UseOS2Metrics) { if (useTypo) { float halfGap = lineGap / 2f; font.Ascender = ascender + halfGap; font.Descender = halfGap - descender; font.LineGap = font.Ascender + font.Descender; } else { font.Ascender = wAscender; font.Descender = wDescender; font.LineGap = font.Ascender + font.Descender; } } if (version >= 1) { // ulCodePageRange1 parser.ReadUInt32(); // ulCodePageRange2 parser.ReadUInt32(); } if (version >= 2) { // sxHeight parser.ReadInt16(); // sCapHeight parser.ReadInt16(); // usDefaultChar parser.ReadUInt16(); // usBreakChar parser.ReadUInt16(); // usMaxContent parser.ReadUInt16(); } }
public static bool Load(FontParser parser, FontFace font, bool full) { font.RequiresLoad = !full; font.Parser = parser; // Read the version: int dec; int version = parser.ReadFixed(out dec); if (version == 1 && dec == 0) { // TTF outline format. } else { // Reset to start: parser.Position = 0; // OpenType. Read the tag (right at the start): string openTypeVersion = parser.ReadTag(); if (openTypeVersion == "OTTO") { // CFF outline format. } else { // Unsupported format. return(false); } } // Table count: int numTables = parser.ReadUInt16(); // Move to p12: parser.Position = 12; for (int i = 0; i < numTables; i++) { // Read the tables tag: string tag = parser.ReadTag(); // Move parser along: parser.Position += 4; // Read the offset: int offset = (int)parser.ReadUInt32(); // Grab the position - this allows the tables to mess it up: int basePosition = parser.Position; switch (tag) { case "cmap": parser.CmapOffset = offset; break; case "head": // Load the header: if (!HeaderTables.Load(parser, offset, font, out parser.IndexToLocFormat)) { return(false); } break; case "hhea": parser.HheaOffset = offset; break; case "hmtx": parser.HmtxOffset = offset; break; case "maxp": // Maxp table: MaxpTables.Load(parser, offset, font, out parser.GlyphCount); break; case "name": // General meta: NameTables.Load(parser, offset, font); break; case "OS/2": // OS2 table: OS2Tables.Load(parser, offset, font); break; case "post": // Postscript info table: parser.PostOffset = offset; break; case "glyf": parser.GlyfOffset = offset; break; case "loca": parser.LocaOffset = offset; break; case "GSUB": // Gsub(stitute) table. Ligatures fall through here. GsubTables.Load(parser, offset, font); break; case "CFF ": parser.CffOffset = offset; break; case "kern": parser.KernOffset = offset; break; case "GPOS": parser.GposOffset = offset; break; } // Skip meta: parser.Position = basePosition + 4; } if (full) { return(ReadTables(parser, font)); } return(true); }
public static bool Load(FontParser parser,int start,FontFace font,Glyph[] glyphs){ // Seek there: parser.Position=start; // Read the version (and check if it's zero): if(parser.ReadUInt16()!=0){ return false; } // Strangely the cmap table can have lots of tables inside it. For now we're looking for the common type 3 table. // Number of tables: int tableCount=parser.ReadUInt16(); // Total characters in font: int characterCount=0; int offset=-1; int favour=0; for(int i = 0; i < tableCount; i += 1) { // Grab the platform ID: int platformId=parser.ReadUInt16(); // And the encoding ID: int encodingId=parser.ReadUInt16(); if(platformId==3 || platformId==0){ if(encodingId==10){ // Top favourite - most broad Unicode encoding. // Read offset: offset=(int)parser.ReadUInt32(); break; }else if(encodingId==1 || encodingId==0){ // Read offset: offset=(int)parser.ReadUInt32(); // Mid-range favourite: favour=1; continue; }else if(favour==0){ // Anything else we'll give a try: // Read offset (but don't break): offset=(int)parser.ReadUInt32(); continue; } } // Skip offset: parser.Position+=4; } if(offset==-1){ // We don't support this font :( return false; } // Seek to the cmap now: parser.Position=start+offset; // Check it's format 4: int format=parser.ReadUInt16(); if(format>6){ // We now have e.g. 12.0 - another short here: parser.Position+=2; // Size/ structure are both 4 byte ints now: parser.Position+=8; }else{ // Size of the sub-table (map length, u16): parser.Position+=2; // Structure of the sub-table (map language, u16): parser.Position+=2; } switch(format){ case 0: // Byte encoding table: for(int i=0;i<256;i++){ int rByte=parser.ReadByte(); Glyph glyph=glyphs[rByte]; if(glyph!=null){ characterCount++; glyph.AddCharcode(i); } } break; case 2: // The offset to the headers: int subOffset=parser.Position + (256 * 2); // For each high byte: for(int i=0;i<256;i++){ // Read the index to the header and zero out the bottom 3 bits: int headerPosition=subOffset + (parser.ReadUInt16() & (~7)); // Read the header: int firstCode=parser.ReadUInt16(ref headerPosition); int entryCount=parser.ReadUInt16(ref headerPosition); short idDelta=parser.ReadInt16(ref headerPosition); // Grab the current position: int pos=headerPosition; // Read the idRangeOffset - the last part of the header: pos+=parser.ReadUInt16(ref headerPosition); int maxCode=firstCode+entryCount; // Get the high byte value: int highByte=(i<<8); // For each low byte: for (int j=firstCode;j<maxCode;j++){ // Get the full charcode (which might not actually exist yet): int charCode=highByte+j; // Read the base of the glyphIndex: int p=parser.ReadUInt16(ref pos); if(p==0){ continue; } p=(p+idDelta) & 0xFFFF; if(p==0){ continue; } Glyph glyph=glyphs[p]; if(glyph!=null){ characterCount++; glyph.AddCharcode(charCode); } } } break; case 4: // Segment count. It's doubled. int segCount=(parser.ReadUInt16() >> 1); // Search range, entry selector and range shift (don't need any): parser.Position+=6; int baseIndex=parser.Position; int endCountIndex=baseIndex; baseIndex+=2; int startCountIndex = baseIndex + segCount * 2; int idDeltaIndex = baseIndex + segCount * 4; int idRangeOffsetIndex = baseIndex + segCount * 6; for(int i = 0; i < segCount - 1; i ++){ int endCount = parser.ReadUInt16(ref endCountIndex); int startCount = parser.ReadUInt16(ref startCountIndex); int idDelta = parser.ReadInt16(ref idDeltaIndex); int idRangeOffset = parser.ReadUInt16(ref idRangeOffsetIndex); for(int c = startCount; c <= endCount;c++){ int glyphIndex; if(idRangeOffset != 0){ // The idRangeOffset is relative to the current position in the idRangeOffset array. // Take the current offset in the idRangeOffset array. int glyphIndexOffset = (idRangeOffsetIndex - 2); // Add the value of the idRangeOffset, which will move us into the glyphIndex array. glyphIndexOffset += idRangeOffset; // Then add the character index of the current segment, multiplied by 2 for USHORTs. glyphIndexOffset += (c - startCount) * 2; glyphIndex=parser.ReadUInt16(ref glyphIndexOffset); if(glyphIndex!=0){ glyphIndex = (glyphIndex + idDelta) & 0xFFFF; } }else{ glyphIndex = (c + idDelta) & 0xFFFF; } // Add a charcode to the glyph now: Glyph glyph=glyphs[glyphIndex]; if(glyph!=null){ characterCount++; glyph.AddCharcode(c); } } } break; case 6: int firstCCode=parser.ReadUInt16(); int entryCCount=parser.ReadUInt16(); for(int i=0;i<entryCCount;i++){ Glyph glyphC=glyphs[parser.ReadUInt16()]; if(glyphC!=null){ characterCount++; glyphC.AddCharcode(firstCCode+i); } } break; case 12: int groups=(int)parser.ReadUInt32(); for(int i=0;i<groups;i++){ int startCode=(int)parser.ReadUInt32(); int endCode=(int)parser.ReadUInt32(); int startGlyph=(int)parser.ReadUInt32(); int count=(endCode - startCode); for(int j=0;j<=count;j++){ int glyphIndex=(startGlyph+j); Glyph glyph=glyphs[glyphIndex]; if(glyph!=null){ characterCount++; glyph.AddCharcode(startCode+j); } } } break; default: Fonts.OnLogMessage("InfiniText does not currently support this font. If you need it, please contact us with this: Format: "+format); break; } font.CharacterCount=characterCount; return true; }
//--------------------------------------
public static bool Load(FontParser parser, FontFace font, bool full) { font.RequiresLoad = !full; font.Parser = parser; // Read the magic number: uint magic = parser.ReadUInt32(); if (magic == 0x00010000) { // TTF outline format. } else if (magic == 0x774F4646) { // WOFF 1 return(WoffLoader.Load(1, parser, font)); } else if (magic == 0x774F4632) { // WOFF 2 return(WoffLoader.Load(2, parser, font)); } else { // OpenType (probably) 0x4F54544F // Reset to start: parser.Position = 0; // OpenType. Read the tag (right at the start): string openTypeVersion = parser.ReadTag(); if (openTypeVersion == "OTTO") { // CFF outline format. } else { // Unsupported format. return(false); } } // Table count: int numTables = parser.ReadUInt16(); // Move to p12: parser.Position = 12; for (int i = 0; i < numTables; i++) { // Read the tables tag (e.g. GPOS): string tag = parser.ReadTag(); // Move parser along: parser.Position += 4; // Read the offset: int offset = (int)parser.ReadUInt32(); // Grab the position - this allows the tables to mess it up: int basePosition = parser.Position; // Handle the table now: if (!parser.HandleTable(tag, offset, font)) { return(false); } // Skip meta: parser.Position = basePosition + 4; } if (full) { return(ReadTables(parser, font)); } return(true); }
public static bool Load(int version, FontParser parser, FontFace font) { // Load the V1/V2 header: ushort numTables; LoadHeader(version, parser, out numTables); if (version == 1) { MemoryStream ms = new MemoryStream(parser.Data); // Get the ZLIB compression helper: Compressor zLib = Compression.Get("zlib"); // Read each table next. for (int i = 0; i < numTables; i++) { string tag = parser.ReadTag(); uint offset = parser.ReadUInt32(); uint compLength = parser.ReadUInt32(); uint origLength = parser.ReadUInt32(); parser.ReadUInt32(); // origChecksum // Cache position: int pos = parser.Position; if (compLength != origLength) { // Decompress the table now (zlib) // Seek to table: ms.Position = (int)offset; // Decompressed data: byte[] decompressedTable = new byte[(int)origLength]; // Decompress now into our target bytes: zLib.Decompress(ms, decompressedTable); } else { // Ordinary table. parser.HandleTable(tag, (int)offset, font); } // Restore position: parser.Position = pos; } } else if (version == 2) { // Read each table entry next. The data here is compressed as one single block after the table meta. Woff2Table[] tableHeaders = new Woff2Table[numTables]; int offset = 0; for (int i = 0; i < numTables; i++) { // Read the table entry: byte flags = parser.ReadByte(); string tag; int tagFlag = (flags & 63); if (tagFlag == 63) { tag = parser.ReadTag(); } else { tag = TagLookup[tagFlag]; } ulong origLength = parser.ReadBase128(); ulong transformLength = 0; int transformVersion = (flags >> 6); //0-3 if (tag == "glyf" || tag == "loca") { // transform length: transformLength = parser.ReadBase128(); } offset += (int)origLength; tableHeaders[i] = new Woff2Table(tag, offset, (int)transformLength, transformVersion); } } // All ok: return(true); }
private static int LoadSubTable(FontParser parser, int start, FontFace font, Glyph[] glyphs) { // Total characters in subtable: int characterCount = 0; // Seek to the cmap now: parser.Position = start; // Check it's format 4: int format = parser.ReadUInt16(); #if INFINITEXT_DEBUG Fonts.OnLogMessage("Cmap subtable format: " + format); #endif if (format > 13) { // We now have e.g. 14.0 - ulong here ("Length"): parser.Position += 4; } else if (format > 6) { // We now have e.g. 12.0 - another short here (reserved): parser.Position += 2; // Length and language are both 4 byte ints now: parser.Position += 8; } else { // Size of the sub-table (map length, u16): parser.Position += 2; // Structure of the sub-table (map language, u16): parser.Position += 2; } switch (format) { case 0: // Byte encoding table: for (int i = 0; i < 256; i++) { int rByte = parser.ReadByte(); Glyph glyph = glyphs[rByte]; if (glyph != null) { characterCount++; glyph.AddCharcode(i); } } break; case 2: // The offset to the headers: int subOffset = parser.Position + (256 * 2); // For each high byte: for (int i = 0; i < 256; i++) { // Read the index to the header and zero out the bottom 3 bits: int headerPosition = subOffset + (parser.ReadUInt16() & (~7)); // Read the header: int firstCode = parser.ReadUInt16(ref headerPosition); int entryCount = parser.ReadUInt16(ref headerPosition); short idDelta = parser.ReadInt16(ref headerPosition); // Grab the current position: int pos = headerPosition; // Read the idRangeOffset - the last part of the header: pos += parser.ReadUInt16(ref headerPosition); int maxCode = firstCode + entryCount; // Get the high byte value: int highByte = (i << 8); // For each low byte: for (int j = firstCode; j < maxCode; j++) { // Get the full charcode (which might not actually exist yet): int charCode = highByte + j; // Read the base of the glyphIndex: int p = parser.ReadUInt16(ref pos); if (p == 0) { continue; } p = (p + idDelta) & 0xFFFF; if (p == 0) { continue; } Glyph glyph = glyphs[p]; if (glyph != null) { characterCount++; glyph.AddCharcode(charCode); } } } break; case 4: // Segment count. It's doubled. int segCount = (parser.ReadUInt16() >> 1); // Search range, entry selector and range shift (don't need any): parser.Position += 6; int baseIndex = parser.Position; int endCountIndex = baseIndex; baseIndex += 2; int startCountIndex = baseIndex + segCount * 2; int idDeltaIndex = baseIndex + segCount * 4; int idRangeOffsetIndex = baseIndex + segCount * 6; for (int i = 0; i < segCount - 1; i++) { int endCount = parser.ReadUInt16(ref endCountIndex); int startCount = parser.ReadUInt16(ref startCountIndex); int idDelta = parser.ReadInt16(ref idDeltaIndex); int idRangeOffset = parser.ReadUInt16(ref idRangeOffsetIndex); for (int c = startCount; c <= endCount; c++) { int glyphIndex; if (idRangeOffset != 0) { // The idRangeOffset is relative to the current position in the idRangeOffset array. // Take the current offset in the idRangeOffset array. int glyphIndexOffset = (idRangeOffsetIndex - 2); // Add the value of the idRangeOffset, which will move us into the glyphIndex array. glyphIndexOffset += idRangeOffset; // Then add the character index of the current segment, multiplied by 2 for USHORTs. glyphIndexOffset += (c - startCount) * 2; glyphIndex = parser.ReadUInt16(ref glyphIndexOffset); if (glyphIndex != 0) { glyphIndex = (glyphIndex + idDelta) & 0xFFFF; } } else { glyphIndex = (c + idDelta) & 0xFFFF; } // Add a charcode to the glyph now: Glyph glyph = glyphs[glyphIndex]; if (glyph != null) { characterCount++; glyph.AddCharcode(c); } } } break; case 6: int firstCCode = parser.ReadUInt16(); int entryCCount = parser.ReadUInt16(); for (int i = 0; i < entryCCount; i++) { Glyph glyphC = glyphs[parser.ReadUInt16()]; if (glyphC != null) { characterCount++; glyphC.AddCharcode(firstCCode + i); } } break; case 10: // Trimmed array. Similar to format 6. int startCharCode = parser.ReadUInt16(); int numChars = parser.ReadUInt16(); for (int i = 0; i < numChars; i++) { Glyph glyphC = glyphs[parser.ReadUInt16()]; if (glyphC != null) { characterCount++; glyphC.AddCharcode(startCharCode + i); } } break; case 12: // Segmented coverage. // Mapping of 1 charcode to 1 glyph. "Segmented" because it can come in blocks called groups. int groups = (int)parser.ReadUInt32(); // For each group of glyphs.. for (int i = 0; i < groups; i++) { // Start/end charcode: int startCode = (int)parser.ReadUInt32(); int endCode = (int)parser.ReadUInt32(); // Start glyph ID: int startGlyph = (int)parser.ReadUInt32(); int count = (endCode - startCode); // For each glyph/charcode pair.. for (int j = 0; j <= count; j++) { // Get the glyph: int glyphIndex = (startGlyph + j); Glyph glyph = glyphs[glyphIndex]; if (glyph != null) { characterCount++; // Charcode is.. glyph.AddCharcode(startCode + j); } } } break; case 13: // Many to one. Same format as #12 but the meaning is a bit different. // How many groups? int glyphCount = (int)parser.ReadUInt32(); for (int i = 0; i < glyphCount; i++) { int startCode = (int)parser.ReadUInt32(); int endCode = (int)parser.ReadUInt32(); int glyphID = (int)parser.ReadUInt32(); // Get the glyph: Glyph glyph = glyphs[glyphID]; if (glyph != null) { int count = (endCode - startCode); // For each charcode.. for (int j = 0; j <= count; j++) { characterCount++; // Hook up glyph to this charcode: glyph.AddCharcode(startCode + j); } } } break; case 14: Fonts.OnLogMessage("InfiniText partially supports part of the font '" + font.Family.Name + "' - this is harmless. Search for this message for more."); // This font contains a format 14 CMAP Table. // Format 14 is "Unicode variation selectors" - essentially different versions of the same character. // E.g. a text Emoji character and a graphical one. // In a text system like InfiniText, that just means we must map a bunch of different charcodes // to the same glyph. // .. I Think! As usual, the OpenType spec doesn't make too much sense. // However, it appears to be entirely optional. // So, approx implementation is below, however getting the utf32 code point from the variation + base character // is completely undocumented - my best guess unfortunately threw errors. // See the commented out block below! break; /* * * case 14: * * // How many var selector records? * int records=(int)parser.ReadUInt32(); * * for(int i=0;i<records;i++){ * * // variation selector: * int varSelector=(int)parser.ReadUInt24(); * * // Offsets: * int defaultUVSOffset=(int)parser.ReadUInt32(); * int nonDefaultUVSOffset=(int)parser.ReadUInt32(); * * // Grab parser position: * int position=parser.Position; * * // Got a ref to a default style table? * if(defaultUVSOffset!=0){ * * // Yep! The UVS is simply a list of "base" characters, each with ranges of available charcodes. * // [BaseCharCode][The extended part. Each of these comes from the range.] * // The actual glyph is the one that we get by directly looking up each of the base characters. * * // Seek to the table: * parser.Position=start+defaultUVSOffset; * * // Read the unicode value ranges count: * int numUniRangesCount=(int)parser.ReadUInt32(); * * // For each one.. * for(int m=0;m<numUniRangesCount;m++){ * * // Read the base charcode: * int baseCharcode=(int)parser.ReadUInt24(); * * // Read the size of the range: * byte rangeSize=parser.ReadByte(); * * for(int c=0;c<=rangeSize;c++){ * * // Fetch the base glyph: * Glyph glyph=font.GetGlyphDirect(baseCharcode); * * if(glyph!=null){ * * // Combine baseCharcode with varSelector next to form the variation (of "glyph"). * * // Get the full charcode (this is incorrect!): * // int charcode=char.ConvertToUtf32((char)baseCharcode,(char)varSelector); * * // Add: * //glyph.AddCharcode(charcode); * * } * * // Move baseCharcode along: * baseCharcode++; * * } * * } * * // Restore parser: * parser.Position=position; * * } * * // Got a ref to a non-default style table? * if(nonDefaultUVSOffset!=0){ * * // Yep! The UVS is simply a list of "base" characters, each with ranges of available charcodes. * // [BaseCharCode][The extended part. Each of these comes from the range.] * // This time though, the glyph to use is directly specified * // (that's what gives it the "non-default" property). * * // Seek to the table: * parser.Position=start+nonDefaultUVSOffset; * * // Read the number of mappings: * int numMappings=(int)parser.ReadUInt32(); * * // For each one.. * for(int m=0;m<numMappings;m++){ * * // Read the base charcode: * int baseCharcode=(int)parser.ReadUInt24(); * * // Read glyph ID: * int glyphID=(int)parser.ReadUInt16(); * * // Get the glyph: * Glyph glyph=glyphs[glyphID]; * * if(glyph!=null){ * * // Combine baseCharcode with varSelector next to form the variation (of "glyph"). * * // Get the full charcode (this is incorrect!): * // int charcode=char.ConvertToUtf32((char)baseCharcode,(char)varSelector); * * // Add: * //glyph.AddCharcode(charcode); * * } * * } * * // Restore parser: * parser.Position=position; * * } * * } * * break; * */ default: Fonts.OnLogMessage("InfiniText does not currently support part of this font. If you need it, please contact us with this: Format: " + format); break; } return(characterCount); }
public static void Load(FontParser parser, int offset, FontFace font) { // Seek: parser.Position = offset; // version int version = parser.ReadUInt16(); // xAvgCharWidth parser.ReadInt16(); // usWeightClass int weight = parser.ReadUInt16(); // usWidthClass int stretch = parser.ReadUInt16(); // fsType parser.ReadUInt16(); // ySubscriptXSize parser.ReadInt16(); // ySubscriptYSize parser.ReadInt16(); // ySubscriptXOffset parser.ReadInt16(); // ySubscriptYOffset parser.ReadInt16(); // ySuperscriptXSize parser.ReadInt16(); // ySuperscriptYSize parser.ReadInt16(); // ySuperscriptXOffset parser.ReadInt16(); // ySuperscriptYOffset parser.ReadInt16(); // yStrikeoutSize font.StrikeSize = (float)parser.ReadInt16() / font.UnitsPerEmF; // yStrikeoutPosition font.StrikeOffset = (float)parser.ReadInt16() / font.UnitsPerEmF; // sFamilyClass parser.ReadInt16(); // panose: /* * byte panose=new byte[10]; * * for(int i=0;i<10;i++){ * panose[i]=parser.ReadByte(); * } */ parser.Position += 10; // ulUnicodeRange1 parser.ReadUInt32(); // ulUnicodeRange2 parser.ReadUInt32(); // ulUnicodeRange3 parser.ReadUInt32(); // ulUnicodeRange4 parser.ReadUInt32(); // achVendID parser.ReadTag(); // fsSelection int type = parser.ReadUInt16(); bool italic = ((type & 1) == 1); // bool strikeout=((type&16)==16); // bool underscore=((type&2)==2); bool oblique = ((type & 512) == 512); bool bold = ((type & 32) == 32); bool regular = ((type & 64) == 64); bool useTypo = ((type & 128) == 128); if (!bold || regular) { // Must be regular: weight = 400; } else if (weight == 0) { weight = 700; } int styleCode = 0; if (italic) { styleCode = FontFaceFlags.Italic; } else if (oblique) { styleCode = FontFaceFlags.Oblique; } font.SetFlags(styleCode, weight, stretch); // usFirstCharIndex parser.ReadUInt16(); // usLastCharIndex parser.ReadUInt16(); // sTypoAscender float ascender = (float)parser.ReadInt16() / font.UnitsPerEmF; // sTypoDescender float descender = (float)parser.ReadInt16() / font.UnitsPerEmF; // sTypoLineGap float lineGap = ((float)parser.ReadInt16() / font.UnitsPerEmF); // We'll now always use OS/2 unless this table isn't present, in which case HHEA takes over. // (The W3C suggested approach). if (Fonts.AlwaysUseTypo || useTypo) { // Apply as-is: font.Ascender = ascender; font.Descender = -descender; font.LineGap = lineGap; // Remove internal leading if there is one: float internalLeading = (ascender - descender) - 1f; if (internalLeading != 0f) { // Add to lineGap: font.Ascender -= internalLeading; font.LineGap += internalLeading; } // Skip windows ascent/descent parser.Position += 4; } else { // usWinAscent parser.usWinAscent = (float)parser.ReadUInt16() / font.UnitsPerEmF; // usWinDescent parser.usWinDescent = (float)parser.ReadUInt16() / font.UnitsPerEmF; } if (version >= 1) { // ulCodePageRange1 parser.ReadUInt32(); // ulCodePageRange2 parser.ReadUInt32(); } if (version >= 2) { // sxHeight parser.ReadInt16(); // sCapHeight parser.ReadInt16(); // usDefaultChar parser.ReadUInt16(); // usBreakChar parser.ReadUInt16(); // usMaxContent parser.ReadUInt16(); } }
public static bool Load(FontParser parser, int offset, FontFace font, out int locFormatIndex) { // Seek there now: parser.Position = offset; // Version: parser.ReadVersion(); // Revision: parser.ReadRevision(); // Checksum adjustment: parser.ReadUInt32(); // Magic number: if (parser.ReadUInt32() != 0x5F0F3CF5) { locFormatIndex = 0; return(false); } // Flags: parser.ReadUInt16(); // Units per em: font.UnitsPerEm = parser.ReadUInt16(); font.UnitsPerEmF = (float)font.UnitsPerEm; // Skip created and modified: parser.ReadTime(); parser.ReadTime(); // X min: parser.ReadInt16(); // Y min: parser.ReadInt16(); // X max: parser.ReadInt16(); // Y max: parser.ReadInt16(); // Mac style: parser.ReadUInt16(); // Lowest Rec PPEM: parser.ReadUInt16(); // Font direction hint: parser.ReadInt16(); // Index for the loc format: locFormatIndex = parser.ReadInt16(); // 50 // Glyph data format: parser.ReadInt16(); return(true); }
public static void Load(FontParser parser, int offset, FontFace font, out int numberOfGlyphs) { // Seek: parser.Position = offset; // version float version = parser.ReadVersion(); // Italic angle. For some reason it's inverted in the spec - negative means a slope to the right. int frac; int dec = parser.ReadFixed(out frac); if (frac != 0) { // Figure it out: float angle = (float)dec / (float)frac; // Apply it (un-inverted): font.SetItalicAngle(-angle); } // underlinePosition parser.ReadInt16(); // underlineThickness parser.ReadInt16(); // isFixedPitch parser.ReadUInt32(); // minMemType42 parser.ReadUInt32(); // maxMemType42 parser.ReadUInt32(); // minMemType1 parser.ReadUInt32(); // maxMemType1 parser.ReadUInt32(); if (version == 2f) { numberOfGlyphs = parser.ReadUInt16(); /* * string[] glyphNames=new string[numberOfGlyphs]; * * for (int i = 0; i < numberOfGlyphs; i++) { * * // Read the index: * int index = parser.ReadUInt16(); * * if(index >= StandardNames.Length){ * * // Read the name: * glyphNames[i]=parser.ReadString(parser.ReadByte()); * * }else{ * * // Grab the std name: * glyphNames[i]=StandardNames[index]; * * } * * } */ } else if (version == 2.5f) { numberOfGlyphs = parser.ReadUInt16(); /* * byte[] offsets = new byte[numberOfGlyphs]; * * for (int i = 0; i < post.numberOfGlyphs; i++){ * * offsets[i] = parser.ReadByte(); * * } */ } else { numberOfGlyphs = -1; } }
public static bool Load(FontParser parser, int start, FontFace font, Glyph[] glyphs) { // Seek there: parser.Position = start; // Read the version (and check if it's zero): if (parser.ReadUInt16() != 0) { return(false); } // Strangely the cmap table can have lots of tables inside it. For now we're looking for the common type 3 table. // Number of tables: int tableCount = parser.ReadUInt16(); // Total characters in font: int characterCount = 0; int offset = -1; int favour = 0; for (int i = 0; i < tableCount; i += 1) { // Grab the platform ID: int platformId = parser.ReadUInt16(); // And the encoding ID: int encodingId = parser.ReadUInt16(); if (platformId == 3 || platformId == 0) { if (encodingId == 10) { // Top favourite - most broad Unicode encoding. // Read offset: offset = (int)parser.ReadUInt32(); break; } else if (encodingId == 1 || encodingId == 0) { // Read offset: offset = (int)parser.ReadUInt32(); // Mid-range favourite: favour = 1; continue; } else if (favour == 0) { // Anything else we'll give a try: // Read offset (but don't break): offset = (int)parser.ReadUInt32(); continue; } } // Skip offset: parser.Position += 4; } if (offset == -1) { // We don't support this font :( return(false); } // Seek to the cmap now: parser.Position = start + offset; // Check it's format 4: int format = parser.ReadUInt16(); if (format > 6) { // We now have e.g. 12.0 - another short here: parser.Position += 2; // Size/ structure are both 4 byte ints now: parser.Position += 8; } else { // Size of the sub-table (map length, u16): parser.Position += 2; // Structure of the sub-table (map language, u16): parser.Position += 2; } switch (format) { case 0: // Byte encoding table: for (int i = 0; i < 256; i++) { int rByte = parser.ReadByte(); Glyph glyph = glyphs[rByte]; if (glyph != null) { characterCount++; glyph.AddCharcode(i); } } break; case 2: // The offset to the headers: int subOffset = parser.Position + (256 * 2); // For each high byte: for (int i = 0; i < 256; i++) { // Read the index to the header and zero out the bottom 3 bits: int headerPosition = subOffset + (parser.ReadUInt16() & (~7)); // Read the header: int firstCode = parser.ReadUInt16(ref headerPosition); int entryCount = parser.ReadUInt16(ref headerPosition); short idDelta = parser.ReadInt16(ref headerPosition); // Grab the current position: int pos = headerPosition; // Read the idRangeOffset - the last part of the header: pos += parser.ReadUInt16(ref headerPosition); int maxCode = firstCode + entryCount; // Get the high byte value: int highByte = (i << 8); // For each low byte: for (int j = firstCode; j < maxCode; j++) { // Get the full charcode (which might not actually exist yet): int charCode = highByte + j; // Read the base of the glyphIndex: int p = parser.ReadUInt16(ref pos); if (p == 0) { continue; } p = (p + idDelta) & 0xFFFF; if (p == 0) { continue; } Glyph glyph = glyphs[p]; if (glyph != null) { characterCount++; glyph.AddCharcode(charCode); } } } break; case 4: // Segment count. It's doubled. int segCount = (parser.ReadUInt16() >> 1); // Search range, entry selector and range shift (don't need any): parser.Position += 6; int baseIndex = parser.Position; int endCountIndex = baseIndex; baseIndex += 2; int startCountIndex = baseIndex + segCount * 2; int idDeltaIndex = baseIndex + segCount * 4; int idRangeOffsetIndex = baseIndex + segCount * 6; for (int i = 0; i < segCount - 1; i++) { int endCount = parser.ReadUInt16(ref endCountIndex); int startCount = parser.ReadUInt16(ref startCountIndex); int idDelta = parser.ReadInt16(ref idDeltaIndex); int idRangeOffset = parser.ReadUInt16(ref idRangeOffsetIndex); for (int c = startCount; c <= endCount; c++) { int glyphIndex; if (idRangeOffset != 0) { // The idRangeOffset is relative to the current position in the idRangeOffset array. // Take the current offset in the idRangeOffset array. int glyphIndexOffset = (idRangeOffsetIndex - 2); // Add the value of the idRangeOffset, which will move us into the glyphIndex array. glyphIndexOffset += idRangeOffset; // Then add the character index of the current segment, multiplied by 2 for USHORTs. glyphIndexOffset += (c - startCount) * 2; glyphIndex = parser.ReadUInt16(ref glyphIndexOffset); if (glyphIndex != 0) { glyphIndex = (glyphIndex + idDelta) & 0xFFFF; } } else { glyphIndex = (c + idDelta) & 0xFFFF; } // Add a charcode to the glyph now: Glyph glyph = glyphs[glyphIndex]; if (glyph != null) { characterCount++; glyph.AddCharcode(c); } } } break; case 6: int firstCCode = parser.ReadUInt16(); int entryCCount = parser.ReadUInt16(); for (int i = 0; i < entryCCount; i++) { Glyph glyphC = glyphs[parser.ReadUInt16()]; if (glyphC != null) { characterCount++; glyphC.AddCharcode(firstCCode + i); } } break; case 12: int groups = (int)parser.ReadUInt32(); for (int i = 0; i < groups; i++) { int startCode = (int)parser.ReadUInt32(); int endCode = (int)parser.ReadUInt32(); int startGlyph = (int)parser.ReadUInt32(); int count = (endCode - startCode); for (int j = 0; j <= count; j++) { int glyphIndex = (startGlyph + j); Glyph glyph = glyphs[glyphIndex]; if (glyph != null) { characterCount++; glyph.AddCharcode(startCode + j); } } } break; default: Fonts.OnLogMessage("InfiniText does not currently support this font. If you need it, please contact us with this: Format: " + format); break; } font.CharacterCount = characterCount; return(true); }
public static bool Load(FontParser parser,int offset,FontFace font,out int locFormatIndex){ // Seek there now: parser.Position=offset; // Version: parser.ReadVersion(); // Revision: parser.ReadRevision(); // Checksum adjustment: parser.ReadUInt32(); // Magic number: if(parser.ReadUInt32()!=0x5F0F3CF5){ locFormatIndex=0; return false; } // Flags: parser.ReadUInt16(); // Units per em: font.UnitsPerEm = parser.ReadUInt16(); font.UnitsPerEmF = (float)font.UnitsPerEm; // Skip created and modified: parser.ReadTime(); parser.ReadTime(); // X min: parser.ReadInt16(); // Y min: parser.ReadInt16(); // X max: parser.ReadInt16(); // Y max: parser.ReadInt16(); // Mac style: parser.ReadUInt16(); // Lowest Rec PPEM: parser.ReadUInt16(); // Font direction hint: parser.ReadInt16(); // Index for the loc format: locFormatIndex = parser.ReadInt16(); // 50 // Glyph data format: parser.ReadInt16(); return true; }
public static bool Load(FontParser parser, int start, FontFace font, Glyph[] glyphs) { // Seek there: parser.Position = start; // Read the version (and check if it's zero): if (parser.ReadUInt16() != 0) { return(false); } // Strangely the cmap table can have lots of tables inside it. For now we're looking for the common type 3 table. // -> Got to grab all tables for a particular "platform". // -> Prefer platform 3 (Microsoft, most common and best documented), then 0, then anything else. // So, first let's figure out which platform we'll be using. // Favourite platform so far: int selectedPlatform = -1; // Number of tables: int tableCount = parser.ReadUInt16(); for (int i = 0; i < tableCount; i += 1) { // Grab the platform ID: int platformId = parser.ReadUInt16(); if (platformId == 0) { // Great, got platform 0. // Just halt there because we know this fonts got 0 so we'll use that. selectedPlatform = 0; break; } else if (platformId == 3) { // Prefer 3 over others: selectedPlatform = 3; } else if (selectedPlatform == -1) { // Anything else (last resort): selectedPlatform = platformId; } // Skip encoding ID and offset: parser.Position += 6; } if (selectedPlatform == -1) { // Empty table! Return. return(false); } // Round 2. This time, select all subtables of the favourite platform. // Then collect the offset and load it up. // Reset parser, skipping count and version: parser.Position = start + 4; // For each table.. for (int i = 0; i < tableCount; i += 1) { // Grab the platform ID: int platformId = parser.ReadUInt16(); #if INFINITEXT_DEBUG // And the encoding ID: int encodingId = parser.ReadUInt16(); Fonts.OnLogMessage("Font " + font.FamilyName + " cmap subtable. Platform ID: " + platformId + ", encoding ID: " + encodingId); #else // And the encoding ID: parser.ReadUInt16(); #endif if (platformId == selectedPlatform) { // Read offset: int offset = (int)parser.ReadUInt32(); // Get position: int position = parser.Position; // Load the subtable now: font.CharacterCount += LoadSubTable(parser, start + offset, font, glyphs); // Reset parser: parser.Position = position; } else { // Skip offset: parser.Position += 4; } } return(true); }
public static void Load(FontParser parser,int offset,FontFace font,out int numberOfGlyphs){ // Seek: parser.Position=offset; // version float version=parser.ReadVersion(); // Italic angle. For some reason it's inverted in the spec - negative means a slope to the right. int frac; int dec=parser.ReadFixed(out frac); if(frac!=0){ // Figure it out: float angle=(float)dec/(float)frac; // Apply it (un-inverted): font.SetItalicAngle(-angle); } // underlinePosition parser.ReadInt16(); // underlineThickness parser.ReadInt16(); // isFixedPitch parser.ReadUInt32(); // minMemType42 parser.ReadUInt32(); // maxMemType42 parser.ReadUInt32(); // minMemType1 parser.ReadUInt32(); // maxMemType1 parser.ReadUInt32(); if(version==2f){ numberOfGlyphs = parser.ReadUInt16(); /* string[] glyphNames=new string[numberOfGlyphs]; for (int i = 0; i < numberOfGlyphs; i++) { // Read the index: int index = parser.ReadUInt16(); if(index >= StandardNames.Length){ // Read the name: glyphNames[i]=parser.ReadString(parser.ReadByte()); }else{ // Grab the std name: glyphNames[i]=StandardNames[index]; } } */ }else if(version==2.5f){ numberOfGlyphs = parser.ReadUInt16(); /* byte[] offsets = new byte[numberOfGlyphs]; for (int i = 0; i < post.numberOfGlyphs; i++){ offsets[i] = parser.ReadByte(); } */ }else{ numberOfGlyphs=-1; } }
public static void Load(FontParser parser,int offset,FontFace font){ // Got OS2: parser.ReadOS2=true; // Seek: parser.Position=offset; // version int version=parser.ReadUInt16(); // xAvgCharWidth parser.ReadInt16(); // usWeightClass int weight=parser.ReadUInt16(); // usWidthClass parser.ReadUInt16(); // fsType parser.ReadUInt16(); // ySubscriptXSize parser.ReadInt16(); // ySubscriptYSize parser.ReadInt16(); // ySubscriptXOffset parser.ReadInt16(); // ySubscriptYOffset parser.ReadInt16(); // ySuperscriptXSize parser.ReadInt16(); // ySuperscriptYSize parser.ReadInt16(); // ySuperscriptXOffset parser.ReadInt16(); // ySuperscriptYOffset parser.ReadInt16(); // yStrikeoutSize font.StrikeSize=(float)parser.ReadInt16()/font.UnitsPerEmF; // yStrikeoutPosition font.StrikeOffset=(float)parser.ReadInt16()/font.UnitsPerEmF; // sFamilyClass parser.ReadInt16(); // panose: /* byte panose=new byte[10]; for(int i=0;i<10;i++){ panose[i]=parser.ReadByte(); } */ parser.Position+=10; // ulUnicodeRange1 parser.ReadUInt32(); // ulUnicodeRange2 parser.ReadUInt32(); // ulUnicodeRange3 parser.ReadUInt32(); // ulUnicodeRange4 parser.ReadUInt32(); // achVendID parser.ReadTag(); // fsSelection int type=parser.ReadUInt16(); bool italic=((type&1)==1); // bool strikeout=((type&16)==16); // bool underscore=((type&2)==2); bool oblique=((type&512)==512); bool bold=((type&32)==32); bool regular=((type&64)==64); bool useTypo=((type&128)==128); if(!bold || regular){ // Must be regular: weight=400; }else if(weight==0){ weight=700; } font.SetFlags(italic || oblique,weight); // usFirstCharIndex parser.ReadUInt16(); // usLastCharIndex parser.ReadUInt16(); // sTypoAscender float ascender=(float)parser.ReadInt16()/font.UnitsPerEmF; // sTypoDescender float descender=(float)parser.ReadInt16()/font.UnitsPerEmF; // sTypoLineGap float lineGap=((float)parser.ReadInt16()/font.UnitsPerEmF); // usWinAscent float wAscender=(float)parser.ReadUInt16()/font.UnitsPerEmF; // usWinDescent float wDescender=(float)parser.ReadUInt16()/font.UnitsPerEmF; // This is an awkward spec hack due to most windows programs // providing the wrong typo descender values. if(Fonts.UseOS2Metrics){ if(useTypo){ float halfGap=lineGap/2f; font.Ascender=ascender + halfGap; font.Descender=halfGap-descender; font.LineGap=font.Ascender + font.Descender; }else{ font.Ascender=wAscender; font.Descender=wDescender; font.LineGap=font.Ascender + font.Descender; } } if (version >= 1){ // ulCodePageRange1 parser.ReadUInt32(); // ulCodePageRange2 parser.ReadUInt32(); } if (version >= 2){ // sxHeight parser.ReadInt16(); // sCapHeight parser.ReadInt16(); // usDefaultChar parser.ReadUInt16(); // usBreakChar parser.ReadUInt16(); // usMaxContent parser.ReadUInt16(); } }