示例#1
0
        public bool Decompress(ref Huffman.HuffmanData data)
        {
            Node treeTop = createBinaryTree(data.frequency);

            createDictionary(treeTop, new List <bool>());
            data.uncompressedData = decodeBitArray(new BitArray(data.compressedData), ref treeTop, ref data.sizeOfUncompressedData);
            return(true);
        }
示例#2
0
        public bool Compress(ref Huffman.HuffmanData data)
        {
            byte[] inValue = data.uncompressedData;
            data.frequency = frequency(inValue);

            Node treeTop = createBinaryTree(data.frequency);

            createDictionary(treeTop, new List <bool>());

            data.compressedData         = storeContentToByteArray(inValue);
            data.sizeOfUncompressedData = inValue.Count();

            return(true);
        }
示例#3
0
        bool Huffman.IPlugin.Decompress(ref Huffman.HuffmanData hf)
        {
            try
            {
                TableFq    tf     = new TableFq(hf.frequency);                                         // Création de la table de frèquence à partir des données d'entrée
                BinaryTree bnTree = new BinaryTree();                                                  // nouvel arbre binaire vide
                bnTree.feedTree(tf);                                                                   // initialisation de l'arbre avec la table de fréquence
                bnTree.computeTree();                                                                  //génération de l'arbre binaire final à partir des données qu'il contient
                HuffmanCode hfCode = new HuffmanCode();
                hfCode = bnTree.createHuffman();                                                       //génération d'un code huffman pour chaque byte différent des données d'entrée à l'aide de l'arbre binaire (stockage dans un dictionnaire)

                hf.uncompressedData = hfCode.decompress(hf.compressedData, hf.sizeOfUncompressedData); /* décompression à l'aide du code de Huffman. Stockage dans la structure HuffmanData
                                                                                                        * qui est échangée entre le plugin et le programme par le biais de MarshalByRefObject */
            }
            catch (Exception e)
            {
                return(false); // la décompression a échouée si une exception est levée
            }
            return(true);
        }
示例#4
0
        static void Main(string[] args)
        {
            bool Compress(ref HuffmanData data)
            {
                FrequencyTable frequencyTable = new FrequencyTable();

                foreach (byte b in data.uncompressedData)
                {
                    frequencyTable.Add(b);
                }

                /*
                 * Creation of the forest which is represented by a list of binary trees.
                 * We add one BinaryTree containing one Node representing a symbol for all the different possible symbols (byte).
                 * Each Node will thus have its symbol (byte) and its frequency (int).
                 */
                Forest forest = new Forest();

                foreach (byte b in frequencyTable.Keys)
                {
                    forest.Add(new BinaryTree(new Node(b, frequencyTable[b])));
                }

                /*
                 * This function is in charge of getting a unique binary tree from all the binary trees contained in the Forest.
                 * While the Forest has several trees, we remove the two trees containing the two nodes that have the lowest frequency
                 * and assign them to the left and right nodes of the root of a new BinaryTree that we finally had to the forest.
                 */
                BinaryTree binaryTree = forest.GetUniqueTree();

                /*
                 * This is where the Huffman codes are created.
                 * We go all through our BinaryTree thanks to the classic preorder method.
                 * When we reach a leaf, we add our code to dictionaries that we'll be using to compress our data.
                 * A code is represented by a List of Boolean.
                 */
                forest.Preorder(binaryTree.Root, new Code());
                Dictionary <Byte, Code> codeTable   = forest.getCodeTable();
                Dictionary <Code, Byte> decodeTable = forest.getDecodeTable();

                /*
                 * We get the number of bytes that are required to store our compressed data on a array of bytes.
                 * To do it, for each symbol (byte), we multiply its number of occurrences in our uncompressed data by the number of Boolean
                 * used to code the symbol. If the result is divisible by eight, we proceed to the division and this is our seeked number. If not,
                 * we add one extra byte.
                 */
                int GetRequiredBytesNumber()
                {
                    int size = 0;

                    foreach (Byte b in frequencyTable.Keys)
                    {
                        size += frequencyTable[b] * codeTable[b].Count;
                    }
                    return(size % 8 == 0 ? size / 8 : size / 8 + 1);
                }

                int RequiredBytesNumber = GetRequiredBytesNumber();

                /*
                 * Here starts the compressing.
                 */
                Byte[] compressedData = new Byte[RequiredBytesNumber];

                /*
                 * First, for all our symbols in our uncompressed data, let's add their Huffman code to a List of Booleans.
                 * This List only contains the bits that are very significant according to our Huffman Code.
                 */
                List <bool> compressedDataBoolean = new List <bool>();

                foreach (Byte b in data.uncompressedData)
                {
                    compressedDataBoolean.AddRange(codeTable[b]);
                }
                int sizeDataUncompressed = compressedDataBoolean.Count;

                /*
                 * This function will put all the booleans contained in our list, in bytes (eight by eight) to store them into
                 * an array of bytes.
                 */
                Byte[] BooleanListToByteArray(List <bool> boolList)
                {
                    Byte[]  _compressedData = new Byte[RequiredBytesNumber];
                    Byte    curr = 0;
                    int     i = 0, j = 0;
                    Boolean b;

                    while (boolList.Count > 0)
                    {
                        b = boolList.Last();
                        boolList.RemoveAt(boolList.Count - 1);
                        if (i == 0)
                        {
                            // If we iterate over a boolean that must be the first to be put in a byte ...
                            curr = new byte();
                            curr = 0x0;
                        }
                        if (b)
                        {
                            // If our boolean is true, then we need to put a one in our byte at the right position.
                            curr = (Byte)((1 << i) | curr);
                        }
                        else
                        {
                            // Same if it's false.
                            curr = (Byte)((0 << i) | curr);
                        }
                        if (i == 7)
                        {
                            // If we iterate over a boolean that will fill our byte, then we add the byte to our array.
                            _compressedData[j] = curr;
                            j++;
                            i = 0; // We get the 'byte pointer' ready for the next one.
                        }
                        else
                        {
                            i++;
                        }
                    }
                    // If we didn't get enough booleans to fill the final byte,
                    // we had the byte to the array (the other bits of the byte are zero by default).
                    if (i != 0)
                    {
                        _compressedData[j] = curr;
                    }
                    return(_compressedData);
                }

                compressedData = BooleanListToByteArray(compressedDataBoolean);

                /*
                 * We need to pass our frequency table as a List<KeyValuePair<Byte, int>>.
                 * It's required by the struct used by the tool.
                 */
                List <KeyValuePair <Byte, int> > frequency = frequencyTable.ToList();

                data.compressedData         = compressedData;
                data.frequency              = frequency;
                data.sizeOfUncompressedData = data.uncompressedData.Length;
                return(true);
            }

            bool Decompress(ref HuffmanData data)
            {
                /*
                 * We start by receiving the frequency table already created and we create (again) our forest from it.
                 * We then re-generate the Huffman codes for each symbol.
                 */
                Forest forest2        = new Forest();
                int    necessarybytes = 0;

                foreach (KeyValuePair <Byte, int> kvp in data.frequency)
                {
                    forest2.Add(new BinaryTree(new Node(kvp.Key, kvp.Value)));
                    necessarybytes += kvp.Value;
                }

                BinaryTree binaryTree2 = forest2.GetUniqueTree();

                forest2.Preorder(binaryTree2.Root, new Code());

                /*
                 * To decompress our data, we must parse our compressed data. For an easier writing of the code, We will parse
                 * it from a BitArray, so that we don't have to jump from byte to byte.
                 */
                BitArray bitArray = new BitArray(data.compressedData);

                /*
                 * In some cases, the first byte isn't full of significant bits for our Huffman encoding. It means, that the first
                 * zeros must be ignored (because they're only here to fill the byte). So we need to start parsing after the non-significant
                 * bits. In order to do that, we first retrieve the number of bits that are significant (sizeDataUncompressed).
                 * We just need to adjust our index (start) according to that number.
                 */
                int sizeDataUncompressed = 0;

                foreach (KeyValuePair <Byte, int> kvp in data.frequency)
                {
                    sizeDataUncompressed += kvp.Value * forest2.getCodeTable()[kvp.Key].Count;
                }
                int start = sizeDataUncompressed % 8 == 0 ? 0 : 8 - sizeDataUncompressed % 8;

                /*
                 * This is the function that will parse the full stream of bits, and using the Huffman Table, will get each Symbol.
                 */
                forest2.ProduceByteArrayNew(bitArray, binaryTree2.Root, necessarybytes, start);
                Byte[] finalArray = forest2.GetByteArray();
                data.uncompressedData = finalArray;
                return(true);
            }

            /*
             * Actual Main instructions used to test the proper functioning of the program.
             */
            byte[]      testString = System.IO.File.ReadAllBytes(Path.GetDirectoryName(Process.GetCurrentProcess().MainModule.FileName) + @"\..\..\testString.txt");
            HuffmanData mainData   = new HuffmanData();

            mainData.uncompressedData = testString;
            Compress(ref mainData);
            Decompress(ref mainData);
        }