public void UtgAction() { LimitFeatureGenerator _featureGen = new LimitFeatureGenerator() { SkipMissingFeatures = true }; var hand = buildHand(utg); var data = _featureGen.GenerateClassifierInstances(0); _featureGen.GenerateFeatures(hand, 0, 0, data, false); }
public WekaPlayer(string preflopModelFile, string flopModelFile, string turnModelFile, string riverModelFile) { if(_featureGen == null) _featureGen = new LimitFeatureGenerator() { SkipMissingFeatures = true }; if(_models == null) { _models = new Classifier[4]; _models[0] = (Classifier)weka.core.SerializationHelper.read(preflopModelFile); _models[1] = (Classifier)weka.core.SerializationHelper.read(flopModelFile); _models[2] = (Classifier)weka.core.SerializationHelper.read(turnModelFile); _models[3] = (Classifier)weka.core.SerializationHelper.read(riverModelFile); } if(_instances == null) { _instances = new Instances[4]; for(int i = 0; i < 4; i++) _instances[i] = _featureGen.GenerateInstances(i); } }
public NeuralNetworkPlayer(FeedForwardNeuralNetwork network) { _network = network; _featureGen = new LimitFeatureGenerator(); }