public void NPointCrossoverApplyTest() { TestRandom random = new TestRandom(); BinaryVector parent1, parent2, expected, actual; IntValue n; bool exceptionFired; // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48 random.Reset(); n = new IntValue(1); random.IntNumbers = new int[] { 4 }; parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false }); parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true }); expected = new BinaryVector(new bool[] { false, false, false, false, false, false, false, false, true }); actual = NPointCrossover.Apply(random, parent1, parent2, n); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected)); // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48 random.Reset(); n = new IntValue(2); random.IntNumbers = new int[] { 4, 5 }; parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false }); parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true }); expected = new BinaryVector(new bool[] { false, false, false, false, false, false, false, false, false }); actual = NPointCrossover.Apply(random, parent1, parent2, n); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected)); // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48 random.Reset(); n = new IntValue(2); random.IntNumbers = new int[] { 4, 5 }; parent2 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false }); parent1 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true }); expected = new BinaryVector(new bool[] { true, true, false, true, true, false, false, false, true }); actual = NPointCrossover.Apply(random, parent1, parent2, n); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected)); // The following test is not based on any published examples random.Reset(); random.IntNumbers = new int[] { 2 }; parent1 = new BinaryVector(new bool[] { false, true, true, false, false }); // this parent is longer parent2 = new BinaryVector(new bool[] { false, true, true, false }); exceptionFired = false; try { actual = NPointCrossover.Apply(random, parent1, parent2, n); } catch (System.ArgumentException) { exceptionFired = true; } Assert.IsTrue(exceptionFired); }
public void SinglePositionBitflipManipulatorApplyTest() { TestRandom random = new TestRandom(); BinaryVector parent, expected; // The following test is based on Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg, p. 21. random.Reset(); random.IntNumbers = new int[] { 4 }; parent = new BinaryVector(new bool[] { true, true, true, false, false, false, false, false, false, false, true, true, true, true, true, true, false, false, false, true, false, true }); expected = new BinaryVector(new bool[] { true, true, true, false, true, false, false, false, false, false, true, true, true, true, true, true, false, false, false, true, false, true }); SinglePositionBitflipManipulator.Apply(random, parent); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(expected, parent)); }
public void SinglePointCrossoverApplyTest() { TestRandom random = new TestRandom(); BinaryVector parent1, parent2, expected, actual; bool exceptionFired; // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 49 random.Reset(); random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 }; parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false }); parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true }); expected = new BinaryVector(new bool[] { false, true, false, false, false, false, false, false, false }); actual = UniformCrossover.Apply(random, parent1, parent2); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected)); // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 49 random.Reset(); random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 }; parent2 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false }); parent1 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true }); expected = new BinaryVector(new bool[] { true, false, false, true, true, false, false, false, true }); actual = UniformCrossover.Apply(random, parent1, parent2); Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected)); // The following test is not based on any published examples random.Reset(); random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 }; parent1 = new BinaryVector(new bool[] { false, true, true, false, false }); // this parent is longer parent2 = new BinaryVector(new bool[] { false, true, true, false }); exceptionFired = false; try { actual = UniformCrossover.Apply(random, parent1, parent2); } catch (System.ArgumentException) { exceptionFired = true; } Assert.IsTrue(exceptionFired); }