protected RankAndCrowdingSorter(RankAndCrowdingSorter original, Cloner cloner) : base(original, cloner) { }
public NSGA2() { Parameters.Add(new ValueParameter <IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new ValueParameter <BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new ValueParameter <IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100))); Parameters.Add(new ConstrainedValueParameter <ISelector>("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ValueParameter <PercentValue>("CrossoverProbability", "The probability that the crossover operator is applied on two parents.", new PercentValue(0.9))); Parameters.Add(new ConstrainedValueParameter <ICrossover>("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueParameter <PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05))); Parameters.Add(new ConstrainedValueParameter <IManipulator>("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueParameter <MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer())); Parameters.Add(new ValueParameter <IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000))); Parameters.Add(new ValueParameter <IntValue>("SelectedParents", "Each two parents form a new child, typically this value should be twice the population size, but because the NSGA-II is maximally elitist it can be any multiple of 2 greater than 0.", new IntValue(200))); Parameters.Add(new FixedValueParameter <BoolValue>("DominateOnEqualQualities", "Flag which determines wether solutions with equal quality values should be treated as dominated.", new BoolValue(false))); RandomCreator randomCreator = new RandomCreator(); SolutionsCreator solutionsCreator = new SolutionsCreator(); SubScopesCounter subScopesCounter = new SubScopesCounter(); RankAndCrowdingSorter rankAndCrowdingSorter = new RankAndCrowdingSorter(); ResultsCollector resultsCollector = new ResultsCollector(); NSGA2MainLoop mainLoop = new NSGA2MainLoop(); OperatorGraph.InitialOperator = randomCreator; randomCreator.RandomParameter.ActualName = "Random"; randomCreator.SeedParameter.ActualName = SeedParameter.Name; randomCreator.SeedParameter.Value = null; randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name; randomCreator.SetSeedRandomlyParameter.Value = null; randomCreator.Successor = solutionsCreator; solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name; solutionsCreator.Successor = subScopesCounter; subScopesCounter.Name = "Initialize EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions"; subScopesCounter.Successor = rankAndCrowdingSorter; rankAndCrowdingSorter.DominateOnEqualQualitiesParameter.ActualName = DominateOnEqualQualitiesParameter.Name; rankAndCrowdingSorter.CrowdingDistanceParameter.ActualName = "CrowdingDistance"; rankAndCrowdingSorter.RankParameter.ActualName = "Rank"; rankAndCrowdingSorter.Successor = resultsCollector; resultsCollector.CollectedValues.Add(new LookupParameter <IntValue>("Evaluated Solutions", null, "EvaluatedSolutions")); resultsCollector.ResultsParameter.ActualName = "Results"; resultsCollector.Successor = mainLoop; mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name; mainLoop.SelectorParameter.ActualName = SelectorParameter.Name; mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name; mainLoop.CrossoverProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name; mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name; mainLoop.MutatorParameter.ActualName = MutatorParameter.Name; mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name; mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName; mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name; mainLoop.ResultsParameter.ActualName = "Results"; mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions"; foreach (ISelector selector in ApplicationManager.Manager.GetInstances <ISelector>().Where(x => !(x is ISingleObjectiveSelector)).OrderBy(x => x.Name)) { SelectorParameter.ValidValues.Add(selector); } ISelector tournamentSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("CrowdedTournamentSelector")); if (tournamentSelector != null) { SelectorParameter.Value = tournamentSelector; } ParameterizeSelectors(); paretoFrontAnalyzer = new RankBasedParetoFrontAnalyzer(); paretoFrontAnalyzer.RankParameter.ActualName = "Rank"; paretoFrontAnalyzer.RankParameter.Depth = 1; paretoFrontAnalyzer.ResultsParameter.ActualName = "Results"; ParameterizeAnalyzers(); UpdateAnalyzers(); RegisterEventhandlers(); }
private void Initialize() { #region Create parameters Parameters.Add(new ValueLookupParameter <IRandom>("Random", "A pseudo random number generator.")); Parameters.Add(new ValueLookupParameter <BoolArray>("Maximization", "True if an objective should be maximized, or false if it should be minimized.")); Parameters.Add(new ScopeTreeLookupParameter <DoubleArray>("Qualities", "The vector of quality values.")); Parameters.Add(new ValueLookupParameter <IntValue>("PopulationSize", "The population size.")); Parameters.Add(new ValueLookupParameter <IOperator>("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ValueLookupParameter <PercentValue>("CrossoverProbability", "The probability that the crossover operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter <IOperator>("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueLookupParameter <PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter <IOperator>("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueLookupParameter <IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization.")); Parameters.Add(new ValueLookupParameter <IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.")); Parameters.Add(new ValueLookupParameter <VariableCollection>("Results", "The variable collection where results should be stored.")); Parameters.Add(new ValueLookupParameter <IOperator>("Analyzer", "The operator used to analyze each generation.")); Parameters.Add(new LookupParameter <IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated.")); Parameters.Add(new ValueLookupParameter <BoolValue>("DominateOnEqualQualities", "Flag which determines wether solutions with equal quality values should be treated as dominated.")); #endregion #region Create operators VariableCreator variableCreator = new VariableCreator(); ResultsCollector resultsCollector1 = new ResultsCollector(); Placeholder analyzer1 = new Placeholder(); Placeholder selector = new Placeholder(); SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor(); ChildrenCreator childrenCreator = new ChildrenCreator(); UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor(); StochasticBranch crossoverStochasticBranch = new StochasticBranch(); Placeholder crossover = new Placeholder(); ParentCopyCrossover noCrossover = new ParentCopyCrossover(); StochasticBranch mutationStochasticBranch = new StochasticBranch(); Placeholder mutator = new Placeholder(); SubScopesRemover subScopesRemover = new SubScopesRemover(); UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor(); Placeholder evaluator = new Placeholder(); SubScopesCounter subScopesCounter = new SubScopesCounter(); MergingReducer mergingReducer = new MergingReducer(); RankAndCrowdingSorter rankAndCrowdingSorter = new RankAndCrowdingSorter(); LeftSelector leftSelector = new LeftSelector(); RightReducer rightReducer = new RightReducer(); IntCounter intCounter = new IntCounter(); Comparator comparator = new Comparator(); Placeholder analyzer2 = new Placeholder(); ConditionalBranch conditionalBranch = new ConditionalBranch(); variableCreator.CollectedValues.Add(new ValueParameter <IntValue>("Generations", new IntValue(0))); resultsCollector1.CollectedValues.Add(new LookupParameter <IntValue>("Generations")); resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name; analyzer1.Name = "Analyzer"; analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name; selector.Name = "Selector"; selector.OperatorParameter.ActualName = SelectorParameter.Name; childrenCreator.ParentsPerChild = new IntValue(2); crossoverStochasticBranch.ProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name; crossoverStochasticBranch.RandomParameter.ActualName = RandomParameter.Name; crossover.Name = "Crossover"; crossover.OperatorParameter.ActualName = CrossoverParameter.Name; noCrossover.Name = "Clone parent"; noCrossover.RandomParameter.ActualName = RandomParameter.Name; mutationStochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name; mutationStochasticBranch.RandomParameter.ActualName = RandomParameter.Name; mutator.Name = "Mutator"; mutator.OperatorParameter.ActualName = MutatorParameter.Name; subScopesRemover.RemoveAllSubScopes = true; uniformSubScopesProcessor2.Parallel.Value = true; evaluator.Name = "Evaluator"; evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name; subScopesCounter.Name = "Increment EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name; rankAndCrowdingSorter.DominateOnEqualQualitiesParameter.ActualName = DominateOnEqualQualitiesParameter.Name; rankAndCrowdingSorter.CrowdingDistanceParameter.ActualName = "CrowdingDistance"; rankAndCrowdingSorter.RankParameter.ActualName = "Rank"; leftSelector.CopySelected = new BoolValue(false); leftSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name; intCounter.Increment = new IntValue(1); intCounter.ValueParameter.ActualName = "Generations"; comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); comparator.LeftSideParameter.ActualName = "Generations"; comparator.ResultParameter.ActualName = "Terminate"; comparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name; analyzer2.Name = "Analyzer"; analyzer2.OperatorParameter.ActualName = "Analyzer"; conditionalBranch.ConditionParameter.ActualName = "Terminate"; #endregion #region Create operator graph OperatorGraph.InitialOperator = variableCreator; variableCreator.Successor = resultsCollector1; resultsCollector1.Successor = analyzer1; analyzer1.Successor = selector; selector.Successor = subScopesProcessor1; subScopesProcessor1.Operators.Add(new EmptyOperator()); subScopesProcessor1.Operators.Add(childrenCreator); subScopesProcessor1.Successor = mergingReducer; childrenCreator.Successor = uniformSubScopesProcessor1; uniformSubScopesProcessor1.Operator = crossoverStochasticBranch; uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2; crossoverStochasticBranch.FirstBranch = crossover; crossoverStochasticBranch.SecondBranch = noCrossover; crossoverStochasticBranch.Successor = mutationStochasticBranch; crossover.Successor = null; noCrossover.Successor = null; mutationStochasticBranch.FirstBranch = mutator; mutationStochasticBranch.SecondBranch = null; mutationStochasticBranch.Successor = subScopesRemover; mutator.Successor = null; subScopesRemover.Successor = null; uniformSubScopesProcessor2.Operator = evaluator; uniformSubScopesProcessor2.Successor = subScopesCounter; evaluator.Successor = null; subScopesCounter.Successor = null; mergingReducer.Successor = rankAndCrowdingSorter; rankAndCrowdingSorter.Successor = leftSelector; leftSelector.Successor = rightReducer; rightReducer.Successor = intCounter; intCounter.Successor = comparator; comparator.Successor = analyzer2; analyzer2.Successor = conditionalBranch; conditionalBranch.FalseBranch = selector; conditionalBranch.TrueBranch = null; conditionalBranch.Successor = null; #endregion }