protected OneRClassificationSolution(OneRClassificationSolution original, Cloner cloner) : base(original, cloner) { }
private OneRClassificationSolution(OneRClassificationSolution original, Cloner cloner) : base(original, cloner) { }
public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize = 6) { var bestClassified = 0; List <Split> bestSplits = null; string bestVariable = string.Empty; double bestMissingValuesClass = double.NaN; var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices); foreach (var variable in problemData.AllowedInputVariables) { var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices); var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue); var missingValuesDistribution = samples.Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue).ToDictionary(s => s.Key, s => s.Count()).MaxItems(s => s.Value).FirstOrDefault(); //calculate class distributions for all distinct inputValues List <Dictionary <double, int> > classDistributions = new List <Dictionary <double, int> >(); List <double> thresholds = new List <double>(); double lastValue = double.NaN; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { if (sample.inputValue > lastValue || double.IsNaN(lastValue)) { if (!double.IsNaN(lastValue)) { thresholds.Add((lastValue + sample.inputValue) / 2); } lastValue = sample.inputValue; classDistributions.Add(new Dictionary <double, int>()); foreach (var classValue in problemData.ClassValues) { classDistributions[classDistributions.Count - 1][classValue] = 0; } } classDistributions[classDistributions.Count - 1][sample.classValue]++; } thresholds.Add(double.PositiveInfinity); var distribution = classDistributions[0]; var threshold = thresholds[0]; var splits = new List <Split>(); for (int i = 1; i < classDistributions.Count; i++) { var samplesInSplit = distribution.Max(d => d.Value); //join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split if (samplesInSplit < minBucketSize || classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains( distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) { foreach (var classValue in classDistributions[i]) { distribution[classValue.Key] += classValue.Value; } threshold = thresholds[i]; } else { splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); distribution = classDistributions[i]; threshold = thresholds[i]; } } splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); int correctClassified = 0; int splitIndex = 0; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { while (sample.inputValue >= splits[splitIndex].thresholdValue) { splitIndex++; } correctClassified += sample.classValue == splits[splitIndex].classValue ? 1 : 0; } correctClassified += missingValuesDistribution.Value; if (correctClassified > bestClassified) { bestClassified = correctClassified; bestSplits = splits; bestVariable = variable; bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key; } } //remove neighboring splits with the same class value for (int i = 0; i < bestSplits.Count - 1; i++) { if (bestSplits[i].classValue == bestSplits[i + 1].classValue) { bestSplits.Remove(bestSplits[i]); i--; } } var model = new OneRClassificationModel(bestVariable, bestSplits.Select(s => s.thresholdValue).ToArray(), bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass); var solution = new OneRClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); return(solution); }