public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData) : base(model, problemData) { double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices); double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices); this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares))); this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares))); }
public IEnumerable <int> GetClusterValues(IDataset dataset, IEnumerable <int> rows) { return(KMeansClusteringUtil.FindClosestCenters(centers, dataset, allowedInputVariables, rows)); }