示例#1
0
        public static double GetDiferentialSquareErrorL2ForAi(double[,] X, double[,] y, double[,] a, double lambda, int ai)
        {
            int          m            = X.GetLength(0);
            int          n            = X.GetLength(1);
            double       result       = 0;
            object       lockResult   = new object();
            MatrixHelper matrixHelper = new MatrixHelper();

            double[,] at = matrixHelper.Transpose(a);

            Parallel.For(
                // From inclusive
                0,
                // To exclusive
                m,
                // local initial partial result
                () => 0.0d,
                // Loop body
                (i, loopState, partialResult) =>
            {
                double[,] xi = new double[n, 1];
                for (int j = 0; j < n; j++)
                {
                    xi[j, 0] = X[i, j];
                }

                double[,] atDotXi         = matrixHelper.DotProduct(at, xi);
                double localPartialResult = atDotXi[0, 0];
                localPartialResult       -= y[i, 0];
                localPartialResult       *= xi[ai, 0];
                localPartialResult       += (2 * lambda * a[ai, 0]);

                return(localPartialResult + partialResult);
            },
                // Final step for each local context
                (localPartialSum) =>
            {
                lock (lockResult)
                {
                    result += localPartialSum;
                }
            });

            return(result);
        }
示例#2
0
        static void Main(string[] args)
        {
            // Part 1
            MatrixHelper matrixHelper = new MatrixHelper();
            int          n            = 100;
            int          m            = 1000;

            double[,] X      = matrixHelper.GenerateRandomMatrix(m, n, 0, 1);
            double[,] a_true = matrixHelper.GenerateRandomMatrix(n, 1, 0, 1);
            double[,] y      = matrixHelper.DotProduct(X, a_true);
            y = matrixHelper.MatrixAddition(y, matrixHelper.GenerateRandomMatrix(m, 1, 0, 0.1));

            // Part 1.a)
            Console.WriteLine("Printing part 1.a");
            double[,] optimalA = new ClosedLeastSquareError().GetOptimalA(X, y);
            //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(optimalA)} from exact method"));
            double optimalAError = SquareError.GetSquareError(X, y, optimalA);

            Console.WriteLine($"Minimum square error with exact formula is: {optimalAError}");

            Console.WriteLine();
            Console.WriteLine("===========================================");
            Console.WriteLine();

            // Part 1.b)
            Console.WriteLine("Printing part 1.b");
            double[] stepSizes  = new[] { 0.0001, 0.001, 0.00125, 0.001001, 0.00101, 0.00095 };
            int      iterations = 20;
            ConcurrentDictionary <string, GDLeastSquareError> gdlses = new ConcurrentDictionary <string, GDLeastSquareError>();

            Parallel.For(0, stepSizes.Length, i =>
            {
                double stepSize          = stepSizes[i];
                GDLeastSquareError gdlse = new GDLeastSquareError(stepSize, iterations);
                string name = $"Step size {stepSize}";
                gdlses.GetOrAdd(name, (key) => gdlse);
                double[,] gdA = gdlse.GetOptimalA(X, y);
                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                double gdAError = SquareError.GetSquareError(X, y, gdA);
                Console.WriteLine($"Minimum square error for stepsize {stepSize} after {iterations} iterations is: {gdAError}");
            });

            PrintOnScatterPlot("Standard Gradient Descent", gdlses.ToDictionary(kvp => kvp.Key, kvp => kvp.Value.IterationResult));

            Console.WriteLine();
            Console.WriteLine("===========================================");
            Console.WriteLine();

            // Part 1.c)
            Console.WriteLine("Printing part 1.c");
            stepSizes  = new[] { 0.001, 0.01, 0.02 };
            iterations = 1000;
            ConcurrentDictionary <string, SGDLeastSquareError> sgdlses = new ConcurrentDictionary <string, SGDLeastSquareError>();

            Parallel.For(0, stepSizes.Length, i =>
            {
                double stepSize            = stepSizes[i];
                SGDLeastSquareError sgdlse = new SGDLeastSquareError(stepSize, iterations);
                string name = $"Step size {stepSize}";
                sgdlses.GetOrAdd(name, (key) => sgdlse);
                double[,] gdA = sgdlse.GetOptimalA(X, y);
                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                double gdAError = SquareError.GetSquareError(X, y, gdA);
                Console.WriteLine($"Minimum square error for stepsize {stepSize} after {iterations} iterations is: {gdAError}");
            });

            PrintOnScatterPlot("Sthocastic Gradient Descent", sgdlses.ToDictionary(kvp => kvp.Key, kvp => kvp.Value.IterationResult));

            Console.WriteLine();
            Console.WriteLine("===========================================");
            Console.WriteLine();

            // Part 1.d)
            Console.WriteLine("Printing part 1.d");
            int train_m = 100;
            int test_m  = 1000;

            n = 100;
            double[,] X_train = matrixHelper.GenerateRandomMatrix(train_m, n, 0, 1);
            a_true            = matrixHelper.GenerateRandomMatrix(n, 1, 0, 1);
            double[,] y_train = matrixHelper.MatrixAddition(matrixHelper.DotProduct(X_train, a_true), matrixHelper.DotProduct(matrixHelper.GenerateRandomMatrix(train_m, 1, 0, 1), 0.5));
            double[,] X_test  = matrixHelper.GenerateRandomMatrix(test_m, n, 0, 1);
            double[,] y_test  = matrixHelper.MatrixAddition(matrixHelper.DotProduct(X_test, a_true), matrixHelper.DotProduct(matrixHelper.GenerateRandomMatrix(test_m, 1, 0, 1), 0.5));

            double step = 0.0095;

            iterations          = 20;
            double[,] gdAVector = new GDLeastSquareError(step, iterations).GetOptimalA(X_train, y_train);
            //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
            double gdAErrorResult = SquareError.GetSquareError(X_train, y_train, gdAVector);

            Console.WriteLine($"Minimum square error in train data (train data size {train_m}) for stepsize {step} after {iterations} iterations is: {gdAErrorResult}");

            //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
            gdAErrorResult = SquareError.GetSquareError(X_test, y_test, gdAVector);
            Console.WriteLine($"Minimum square error in test data  (train data size {train_m}) for stepsize {step} after {iterations} iterations is: {gdAErrorResult}");

            train_m = 20;
            double[,] X_train_20 = matrixHelper.GenerateRandomMatrix(train_m, n, 0, 1);
            double[,] y_train_20 = matrixHelper.MatrixAddition(matrixHelper.DotProduct(X_train_20, a_true), matrixHelper.DotProduct(matrixHelper.GenerateRandomMatrix(train_m, 1, 0, 1), 0.5));

            gdAVector = new GDLeastSquareError(step, iterations).GetOptimalA(X_train_20, y_train_20);
            //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
            gdAErrorResult = SquareError.GetSquareError(X_train_20, y_train_20, gdAVector);
            Console.WriteLine($"Minimum square error in train data (train data size {train_m}) for stepsize {step} after {iterations} iterations is: {gdAErrorResult}");

            //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
            gdAErrorResult = SquareError.GetSquareError(X_test, y_test, gdAVector);
            Console.WriteLine($"Minimum square error in test data  (train data size {train_m}) for stepsize {step} after {iterations} iterations is: {gdAErrorResult}");

            Console.WriteLine();
            Console.WriteLine("===========================================");
            Console.WriteLine();

            // Part 1.e)
            Console.WriteLine("Printing part 1.e");
            double[] lambdas = new[] { 100, 10, 1, 0.1, 0.01, 0.001 };
            train_m = 50;
            double[,] X_train_50 = matrixHelper.GenerateRandomMatrix(train_m, n, 0, 1);
            double[,] y_train_50 = matrixHelper.MatrixAddition(matrixHelper.DotProduct(X_train_50, a_true), matrixHelper.DotProduct(matrixHelper.GenerateRandomMatrix(train_m, 1, 0, 1), 0.5));
            Parallel.For(0, lambdas.Length, i =>
            {
                double lambda = lambdas[i];
                int trainSize = 100;
                double[,] gdA = new GDL2LeastSquareError(step, iterations, lambda).GetOptimalA(X_train, y_train);
                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                double gdAError = SquareError.GetSquareError(X_train, y_train, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in train data (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");

                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                gdAError = SquareError.GetSquareError(X_test, y_test, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in test data  (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");

                trainSize = 20;
                gdA       = new GDL2LeastSquareError(step, iterations, lambda).GetOptimalA(X_train_20, y_train_20);
                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                gdAError = SquareError.GetSquareError(X_train_20, y_train_20, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in train data (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");

                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                gdAError = SquareError.GetSquareError(X_test, y_test, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in test data  (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");

                trainSize = 50;
                gdA       = new GDL2LeastSquareError(step, iterations, lambda).GetOptimalA(X_train_50, y_train_50);
                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                gdAError = SquareError.GetSquareError(X_train_50, y_train_50, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in train data (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");

                //Task.Run(() => Console.WriteLine($"Using A {JsonConvert.SerializeObject(gdA)} from {stepSize} step GD"));
                gdAError = SquareError.GetSquareError(X_test, y_test, gdA);
                Console.WriteLine($"Minimum L2 (lambda: {lambda}) square error in test data  (train data size {trainSize}) for stepsize {step} after {iterations} iterations is: {gdAError}");
            });

            // End
            Console.ReadKey();
        }