示例#1
0
文件: ILinAlg.cs 项目: htna/explsolv
        public Tuple <ILinAlgMat, double[]> EigSymm(ILinAlgMat A)
        {
            Func <ILinAlgMat, Tuple <ILinAlgMat, double[]> > func = _EigSymm;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 2, 4, 5 }, { 3, 5, 6 }
                });
                var        tVD = EigSymm(tA);
                ILinAlgMat tV  = tVD.Item1;
                double[]   tD  = tVD.Item2;
                ILinAlgMat tDD = Diag(ToILMat(tD));

                ILinAlgMat tAA = Mul(tV, tDD, tV.Tr);
                double     err = (tAA - tA).ToArray().HAbs().HMax();
                if (err > 0.00000001)
                {
                    Exit("EigSymm, A != V D V'");
                }
                ILinAlgMat tV_Vt = Mul(tV, tV.Tr);
                ILinAlgMat tI    = Eye(3);
                err = (tV_Vt - tI).ToArray().HAbs().HMax();
                if (err > 0.00000001)
                {
                    Exit("EigSymm, I != V V'");
                }
            }
            return(func(A));
        }
示例#2
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat Diag(ILinAlgMat mat)
        {
            Func <ILinAlgMat, ILinAlgMat> func = _Diag;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 2, 4, 5 }, { 3, 5, 6 }
                });
                ILinAlgMat tADiag0 = Diag(tA);
                ILinAlgMat tADiag1 = ToILMat(new double[] { 1, 4, 6 });
                double     tAerr   = (tADiag1 - tADiag0).ToArray().HAbs().HMax();
                if (tAerr > 0.00000001)
                {
                    Exit("Diag(A) is wrong");
                }

                ILinAlgMat tB      = ToILMat(new double[] { 1, 2, 3 });
                ILinAlgMat tBDiag0 = Diag(tB);
                ILinAlgMat tBDiag1 = ToILMat(new double[, ] {
                    { 1, 0, 0 }, { 0, 2, 0 }, { 0, 0, 3 }
                });
                double tBerr = (tADiag1 - tADiag0).ToArray().HAbs().HMax();
                if (tBerr > 0.00000001)
                {
                    Exit("Diag(B) is wrong");
                }
            }
            return(func(mat));
        }
示例#3
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat PInv(ILinAlgMat A)
        {
            Func <ILinAlgMat, ILinAlgMat> func = _PInv;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 2, 3, 5 }, { 3, 4, 5 }
                });
                ILinAlgMat tiA  = PInv(tA);
                ILinAlgMat tiAA = ToILMat(new double[, ] {
                    { -2.5, 1.0, 0.5 }, { 2.5, -2.0, 0.5 }, { -0.5, 1.0, -0.5 }
                });
                double err0 = (tiA - tiAA).ToArray().HAbs().HMax();
                if (err0 > 0.00000001)
                {
                    Exit("Pinv, is incorrect");
                }
                ILinAlgMat tI   = Eye(3);
                double     err1 = (tA * tiA - tI).ToArray().HAbs().HMax();
                if (err1 > 0.00000001)
                {
                    Exit("Pinv, A * invA != I");
                }
                double err2 = (tiA * tA - tI).ToArray().HAbs().HMax();
                if (err2 > 0.00000001)
                {
                    Exit("Pinv, invA * A != I");
                }
            }
            return(func(A));
        }
示例#4
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat Mul(params ILinAlgMat[] mats)
        {
            Func <ILinAlgMat[], ILinAlgMat> func = _Mul;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2 }, { 3, 4 }, { 5, 6 }
                });
                ILinAlgMat tB = ToILMat(new double[, ] {
                    { 7, 8 }, { 9, 1 }
                });
                ILinAlgMat tC = ToILMat(new double[, ] {
                    { 2, 3, 4 }, { 5, 6, 7 }
                });
                ILinAlgMat tR  = Mul(tA, tB, tC);
                ILinAlgMat tRR = ToILMat(new double[, ] {
                    { 100, 135, 170 }, { 254, 339, 424 }, { 408, 543, 678 }
                });
                double terr = (tR - tRR).ToArray().HAbs().HMax();
                if (terr > 0.00000001)
                {
                    Exit("Mul, (A * B * C) is wrong");
                }
            }
            return(func(mats));
        }
示例#5
0
        ///////////////////////////////////////////////////////////////////////////
        ///////////////////////////////////////////////////////////////////////////
        //public static Complex[] Roots2c(double p2, double p1, double p0)
        //{
        //    Complex d = Complex.Sqrt(new Complex(p1 * p1 - 4 * p2 * p0));
        //    Complex[] roots = new Complex[2] {
        //        (-1*p1 + d)/(2*p2),
        //        (-1*p1 - d)/(2*p2)
        //    };
        //    return roots;
        //}
        public static double[] GetRootsClosedFormDegree2(double p2, double p1, double p0)
        {
            if (HDebug.Selftest())
            {
                double[] tsol;

                tsol = GetRootsClosedFormDegree2(1, 2, -3);
                HDebug.Assert(tsol[0] == 1, tsol[1] == -3);

                tsol = GetRootsClosedFormDegree2(4, 3, 10);
                HDebug.Assert(tsol == null);
            }
            double d = p1 * p1 - 4 * p2 * p0;

            if (d >= 0)
            {
                d = Math.Sqrt(d);
                double[] roots = new double[2] {
                    (-1 * p1 + d) / (2 * p2),
                    (-1 * p1 - d) / (2 * p2)
                };
                return(roots);
            }
            return(null);
        }
示例#6
0
        //public static double Cov(Vector vec1, Vector vec2)
        //{
        //    return Cov(vec1.ToArray().ToList(), vec2.ToArray().ToList());
        //}
        public static double HCov(double[] vec1, double[] vec2)
        {
            if (HDebug.Selftest())
            {
                // check with mathematica
                double tcov = HCov(new double[] { 1, 2, 3 }, new double[] { 3, 7, 4 });
                double terr = 0.5 - tcov;
                HDebug.AssertTolerance(0.00000001, terr);
            }
            if (vec1.Length != vec2.Length)
            {
                throw new Exception();
            }
            double avg1 = vec1.HAvg();
            double avg2 = vec2.HAvg();
            double cov  = 0;
            int    size = vec1.Length;

            for (int i = 0; i < size; i++)
            {
                cov += (vec1[i] - avg1) * (vec2[i] - avg2);
            }
            cov = cov / (size - 1); /// the unbiased estimate of the covariance, which divide by (n-1)
            return(cov);
        }
示例#7
0
        public Matrix FnMul(Matrix A, Matrix B)
        {
            if (HDebug.Selftest())
            {
                Matrix tA = new double[, ] {
                    { 1, 2 }
                };
                Matrix tB = new double[, ] {
                    { 2, 3 }, { 4, 5 }
                };
                Matrix tAB0 = new double[, ] {
                    { 10, 13 }
                };
                Matrix tAB1 = FnMul(tA, tB);
                HDebug.AssertToleranceMatrix(0, tAB0 - tAB1);
            }

            var AA   = ToILMat(A);
            var BB   = ToILMat(B);
            var AABB = AA * BB;

            AA.Dispose();
            BB.Dispose();
            Matrix AB = AABB.ToArray();

            AABB.Dispose();
            return(AB);
        }
示例#8
0
 public HDictionary()
 {
     //HDebug.Depreciated();
     if (HDebug.Selftest())
     {
         HDebug.Assert(false); // depreciated
     }
 }
示例#9
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat ToILMat(Matrix mat)
        {
            Func <Matrix, ILinAlgMat> func = _ToILMat;

            if (HDebug.Selftest(func))
            {
            }
            return(_ToILMat(mat));
        }
示例#10
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat Eye(int size)
        {
            Func <int, ILinAlgMat> func = _Eye;

            if (HDebug.Selftest(func))
            {
            }
            return(func(size));
        }
示例#11
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat Ones(int colsize, int rowsize)
        {
            Func <int, int, ILinAlgMat> func = _Ones;

            if (HDebug.Selftest(func))
            {
            }
            return(func(colsize, rowsize));
        }
示例#12
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat ToILMat(double[] mat)
        {
            Func <double[], ILinAlgMat> func = _ToILMat;

            if (HDebug.Selftest(func))
            {
            }
            return(_ToILMat(mat));
        }
示例#13
0
        public static int[] HCount <T>(this IList <T[]> valuess)
        {
            if (HDebug.Selftest())
            {
                double[][] tvaluess = new double[][] { new double[] { 1, 2, 3 }, new double[0], new double[] { 1, 2, 3, 4 } };
                int[]      tcnt     = HCount(tvaluess);
                HDebug.Assert(new TVector <int>(tcnt) == new int[] { 3, 0, 4 });
            }

            int[] counts = new int[valuess.Count];
            for (int i = 0; i < counts.Length; i++)
            {
                counts[i] = valuess[i].Length;
            }
            return(counts);
        }
示例#14
0
        //public static double Corr(Vector vec1, Vector vec2)
        //{
        //    return Corr(vec1.ToArray().ToList(), vec2.ToArray().ToList());
        //}
        public static double HCorr(double[] vec1, double[] vec2)
        {
            if (HDebug.Selftest())
            {
                // check with mathematica
                double tcorr = HCorr(new double[] { 1, 2, 3 }, new double[] { 3, 7, 4 });
                double terr  = 0.2401922307076307 - tcorr;
                HDebug.AssertTolerance(0.00000001, terr);
            }
            if (vec1.Length != vec2.Length)
            {
                throw new Exception();
            }
            double corr = HCov(vec1, vec2) / Math.Sqrt(vec1.HVar() * vec2.HVar());

            return(corr);
        }
示例#15
0
文件: ILinAlg.cs 项目: htna/explsolv
        public double Det(ILinAlgMat mat)
        {
            Func <ILinAlgMat, double> func = _Det;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 2, 4, 5 }, { 3, 5, 6 }
                });
                double tdet = Det(tA);
                if (Math.Abs(tdet - (-1.0)) > 0.00000001)
                {
                    Exit("Det(A) is wrong");
                }
            }
            return(func(mat));
        }
示例#16
0
        static public MatrixByArr Inv2x2(MatrixByArr _this)
        {
            if (HDebug.Selftest())
            {
                //  >>A = [ 1, 2 ; 3, 4 ];
                //  >>invA = inv(A)
                //  invA =
                //     -2.0000    1.0000
                //      1.5000   -0.5000
                //  >> invA* A
                //  ans =
                //      1.0000         0
                //      0.0000    1.0000
                //  >> A*invA
                //  ans =
                //      1.0000         0
                //      0.0000    1.0000
                MatrixByArr _A = new double[2, 2] {
                    { 1, 2 }, { 3, 4 }
                };
                MatrixByArr _invA = Inv2x2(_A);
                HDebug.Assert(_invA[0, 0] == -2); HDebug.Assert(_invA[0, 1] == 1);
                HDebug.Assert(_invA[1, 0] == 1.5); HDebug.Assert(_invA[1, 1] == -0.5);
            }

            // http://www.cvl.iis.u-tokyo.ac.jp/~miyazaki/tech/teche23.html
            if (_this.RowSize != 2 || _this.ColSize != 2)
            {
                return(null);
            }

            double      a    = _this[0, 0];
            double      b    = _this[0, 1];
            double      c    = _this[1, 0];
            double      d    = _this[1, 1];
            double      detA = a * d - b * c;
            MatrixByArr inv  = new MatrixByArr(2, 2);

            inv[0, 0] = d;
            inv[0, 1] = -b;
            inv[1, 0] = -c;
            inv[1, 1] = a;
            inv      /= detA;
            return(inv);
        }
示例#17
0
        public static double HVar(this IList <double> values)
        {
            if (HDebug.Selftest())
            {
                double tvar = (new double[] { 1, 2, 3, 4, 5 }).HVar();
                double terr = 2.5 - tvar;
                HDebug.AssertTolerance(0.0000000001, terr);
            }
            double avg = values.HAvg();
            double var = 0;

            foreach (double value in values)
            {
                var += (avg - value) * (avg - value);
            }
            var /= (values.Count - 1); /// the unbiased estimate of variance, which divide by (n-1)
            return(var);
        }
示例#18
0
        public Tuple <Matrix, Vector> FnEigSymm(Matrix A)
        {
            if (HDebug.Selftest())
            {
                Matrix tA = new double[, ] {
                    { 1, 2 }, { 2, 1 }
                };
                var    tVD = FnEigSymm(tA);
                Matrix tV  = new double[, ] {
                    { -0.7071, 0.7071 }, { 0.7071, 0.7071 }
                };
                Vector tD = new double[] { -1, 3 };
                HDebug.AssertToleranceMatrix(0.0001, tV - tVD.Item1);
                HDebug.AssertToleranceVector(0, tD - tVD.Item2);
            }
            var AA   = ToILMat(A);
            var VVDD = EigSymm(AA);

            return(new Tuple <Matrix, Vector>(VVDD.Item1.ToArray(), VVDD.Item2));
        }
示例#19
0
        public static MatrixByArr AlterDotProd(Vector v1, Vector v2)
        {
            HDebug.ToDo("depreciated. Call VVt(v1,v2)");
            if (HDebug.IsDebuggerAttached && HDebug.Selftest())
            {
                MatrixByArr M0 = AlterDotProd(v1, v2);
                MatrixByArr M1 = VVt(v1, v2);
                HDebug.AssertTolerance(0, M0 - M1);
            }

            MatrixByArr mat = new MatrixByArr(v1.Size, v2.Size);

            for (int c = 0; c < mat.ColSize; c++)
            {
                for (int r = 0; r < mat.RowSize; r++)
                {
                    mat[c, r] = v1[c] * v2[r];
                }
            }
            return(mat);
        }
示例#20
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat InvSymm(ILinAlgMat A)
        {
            Func <ILinAlgMat, ILinAlgMat> func = _InvSymm;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 2, 4, 5 }, { 3, 5, 6 }
                });
                ILinAlgMat tI = ToILMat(new double[, ] {
                    { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }
                });
                ILinAlgMat tInvA = func(tA);
                double     err   = (tInvA * tA - tI).ToArray().HAbs().HMax();
                if (err > 0.00000001)
                {
                    Exit("LinSolve, is incorrect");
                }
            }
            return(func(A));
        }
示例#21
0
文件: ILinAlg.cs 项目: htna/explsolv
        public ILinAlgMat LinSolve(ILinAlgMat A, ILinAlgMat B)
        {
            Func <ILinAlgMat, ILinAlgMat, ILinAlgMat> func = _LinSolve;

            if (HDebug.Selftest(func))
            {
                ILinAlgMat tA = ToILMat(new double[, ] {
                    { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }
                });
                ILinAlgMat tB = ToILMat(new double[, ] {
                    { 3, 4, 5 }, { 6, 7, 8 }, { 9, 10, 11 }
                });
                ILinAlgMat tX  = _LinSolve(tA, tB);
                double     err = (tA * tX - tB).ToArray().HAbs().HMax();
                if (err > 0.00000001)
                {
                    Exit("LinSolve, is incorrect");
                }
            }
            return(func(A, B));
        }
示例#22
0
        public static MatrixByArr InvSymm(MatrixByArr A)
        {
            if (HDebug.Selftest())
            {
                MatrixByArr tA = new double[, ] {
                    { 1, 2, 3 },
                    { 2, 9, 5 },
                    { 3, 5, 6 }
                };
                MatrixByArr tB0 = new double[, ] {
                    { -1.8125, -0.1875, 1.0625 },
                    { -0.1875, 0.1875, -0.0625 },
                    { 1.0625, -0.0625, -0.3125 }
                };
                MatrixByArr tI = LinAlg.Eye(3);

                MatrixByArr tB1 = InvSymm(tA);

                HDebug.AssertTolerance(0.0001, tB0 - tB1);
                HDebug.AssertTolerance(0.0001, tI - tA * tB1);
                HDebug.AssertTolerance(0.0001, tI - tB1 * tA);
            }

            HDebug.Assert(A.ColSize == A.RowSize);
            //double[] eigval;
            //double[,] eigvec;

            bool success = false;//alglib.smatrixevd(A, A.ColSize, 1, false, out eigval, out eigvec);

            if (success == false)
            {
                HDebug.Assert(false);
                return(null);
            }
            HDebug.Assert(false);
            return(null);
        }
示例#23
0
        public Matrix FnMul(Matrix A, Matrix B, Matrix C)
        {
            if (HDebug.Selftest())
            {
                Matrix tA = new double[, ] {
                    { 1, 2 }
                };
                Matrix tB = new double[, ] {
                    { 2, 3 }, { 4, 5 }
                };
                Matrix tC = new double[, ] {
                    { 6 }, { 7 }
                };
                Matrix tABC0 = new double[, ] {
                    { 151 }
                };
                Matrix tABC1 = FnMul(tA, tB, tC);
                HDebug.AssertToleranceMatrix(0, tABC0 - tABC1);
            }
            if (C == null)
            {
                return(FnMul(A, B));
            }
            var AA     = ToILMat(A);
            var BB     = ToILMat(B);
            var CC     = ToILMat(C);
            var AABBCC = AA * BB * CC;

            AA.Dispose();
            BB.Dispose();
            CC.Dispose();
            Matrix ABC = AABBCC.ToArray();

            AABBCC.Dispose();
            return(ABC);
        }
示例#24
0
 //public static double Corr(Vector vec1, Vector vec2, bool ignore_nan /*=false*/)
 //{
 //    return Corr(vec1.ToArray().ToList(), vec2.ToArray().ToList(), ignore_nan);
 //}
 public static double HCorr(double[] vec1, double[] vec2, bool ignore_nan /*=false*/)
 {
     if (HDebug.Selftest())
     {
         double tcorr = HCorr(new double[] { 1, 4, double.NaN, double.NaN, 5, 2, 8 }
                              , new double[] { 2, 1, 3, double.NaN, double.NaN, 7, 9 }
                              , true);
         double terr = 0.5784990588061418 - tcorr;
         HDebug.AssertTolerance(0.00000001, terr);
     }
     if (vec1.Length != vec2.Length)
     {
         throw new Exception();
     }
     if (ignore_nan == true)
     {
         int    size  = vec1.Length;
         bool[] isnan = new bool[size]; // initially false
         foreach (int idxnan in vec1.HListIndexEqualTo(double.NaN))
         {
             isnan[idxnan] = true;
         }
         foreach (int idxnan in vec2.HListIndexEqualTo(double.NaN))
         {
             isnan[idxnan] = true;
         }
         int[] idxnnon = isnan.HListIndexEqualTo(false).ToArray();
         if (idxnnon.Length == 0)
         {
             return(double.NaN);
         }
         vec1 = vec1.HSelectByIndex(idxnnon).ToArray();
         vec2 = vec2.HSelectByIndex(idxnnon).ToArray();
     }
     return(HCorr(vec1, vec2));
 }
示例#25
0
        static public MatrixByArr Inv3x3(MatrixByArr _this)
        {
            if (HDebug.Selftest())
            {
                MatrixByArr tA = new double[, ] {
                    { 1, 2, 3 },
                    { 2, 9, 5 },
                    { 3, 5, 6 }
                };
                MatrixByArr tB0 = new double[, ] {
                    { -1.8125, -0.1875, 1.0625 },
                    { -0.1875, 0.1875, -0.0625 },
                    { 1.0625, -0.0625, -0.3125 }
                };
                MatrixByArr tI = LinAlg.Eye(3);

                MatrixByArr tB1 = Inv3x3(tA);

                HDebug.AssertTolerance(0.0001, tB0 - tB1);
                HDebug.AssertTolerance(0.0001, tI - tA * tB1);
                HDebug.AssertTolerance(0.0001, tI - tB1 * tA);
            }

            // http://www.cvl.iis.u-tokyo.ac.jp/~miyazaki/tech/teche23.html
            if (_this.RowSize != 3 || _this.ColSize != 3)
            {
                return(null);
            }

            double a11  = _this[0, 0];
            double a12  = _this[0, 1];
            double a13  = _this[0, 2];
            double a21  = _this[1, 0];
            double a22  = _this[1, 1];
            double a23  = _this[1, 2];
            double a31  = _this[2, 0];
            double a32  = _this[2, 1];
            double a33  = _this[2, 2];
            double detA = a11 * a22 * a33 + a21 * a32 * a13 + a31 * a12 * a23
                          - a11 * a32 * a23 - a31 * a22 * a13 - a21 * a12 * a33;

            MatrixByArr inv = new MatrixByArr(3, 3);

            inv[0, 0] = a22 * a33 - a23 * a32;
            inv[0, 1] = a13 * a32 - a12 * a33;
            inv[0, 2] = a12 * a23 - a13 * a22;
            inv[1, 0] = a23 * a31 - a21 * a33;
            inv[1, 1] = a11 * a33 - a13 * a31;
            inv[1, 2] = a13 * a21 - a11 * a23;
            inv[2, 0] = a21 * a32 - a22 * a31;
            inv[2, 1] = a12 * a31 - a11 * a32;
            inv[2, 2] = a11 * a22 - a12 * a21;
            inv      /= detA;

            if (HDebug.IsDebuggerAttached)
            {
                MatrixByArr I33 = _this * inv;
                for (int r = 0; r < 3; r++)
                {
                    for (int c = 0; c < 3; c++)
                    {
                        if (r == c)
                        {
                            Debug.Assert(Math.Abs(I33[r, c] - 1) < 0.00001);
                        }
                        else
                        {
                            Debug.Assert(Math.Abs(I33[r, c] - 0) < 0.00001);
                        }
                    }
                }
                I33 = inv * _this;
                for (int r = 0; r < 3; r++)
                {
                    for (int c = 0; c < 3; c++)
                    {
                        if (r == c)
                        {
                            Debug.Assert(Math.Abs(I33[r, c] - 1) < 0.00001);
                        }
                        else
                        {
                            Debug.Assert(Math.Abs(I33[r, c] - 0) < 0.00001);
                        }
                    }
                }
            }
            return(inv);
        }
示例#26
0
        static public MatrixByArr Inv4x4(MatrixByArr _this)
        {
            if (HDebug.Selftest())
            {
                /// >> A=[ 1,2,3,4 ; 5,7,9,10 ; 13,24,52,14 ; 12,43,73,28 ]
                /// >> invA = inv(A)
                ///    -0.5599    0.2942    0.0557   -0.0529
                ///    -0.8416    0.2638   -0.1128    0.0824
                ///     0.3886   -0.1754    0.0576   -0.0216
                ///     0.5193   -0.0739   -0.0007   -0.0117
                /// >> A*invA
                ///     1.0000    0.0000         0   -0.0000
                ///    -0.0000    1.0000   -0.0000    0.0000
                ///          0    0.0000    1.0000    0.0000
                ///          0    0.0000    0.0000    1.0000
                MatrixByArr _A = new double[4, 4] {
                    { 1, 2, 3, 4 }, { 5, 7, 9, 10 }, { 13, 24, 52, 14 }, { 12, 43, 73, 28 }
                };
                MatrixByArr _invA_sol = new double[4, 4]
                {
                    { -0.5599, 0.2942, 0.0557, -0.0529 }
                    , { -0.8416, 0.2638, -0.1128, 0.0824 }
                    , { 0.3886, -0.1754, 0.0576, -0.0216 }
                    , { 0.5193, -0.0739, -0.0007, -0.0117 }
                };
                MatrixByArr _invA = Inv4x4(_A);

                double err1 = (_invA - _invA_sol).HAbsMax();
                HDebug.Assert(err1 < 0.0001);

                MatrixByArr _I     = LinAlg.Eye(4);
                MatrixByArr _AinvA = _A * _invA;
                double      err2   = (_I - _AinvA).HAbsMax();
                HDebug.Assert(err2 < 0.000000001);

                MatrixByArr _invAA = _invA * _A;
                double      err3   = (_I - _invAA).HAbsMax();
                HDebug.Assert(err3 < 0.000000001);
            }

            //////////////////////////////////////////////////////////////////////////
            // http://www.koders.com/cpp/fidFB7C4F93FDDB86E33EB66D177335BA81D86E58B5.aspx
            // Matrix.cpp
            // bool idMat4::InverseFastSelf( void )
            //////////////////////////////////////////////////////////////////////////
            //  //	6*8+2*6 = 60 multiplications
            //  //		2*1 =  2 divisions
            //  idMat2 r0, r1, r2, r3;
            //  float a, det, invDet;
            //  float *mat = reinterpret_cast<float *>(this);
            //
            //  // r0 = m0.Inverse();
            //  det = mat[0*4+0] * mat[1*4+1] - mat[0*4+1] * mat[1*4+0];
            //
            //  if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
            //      return false;
            //  }
            //
            //  invDet = 1.0f / det;
            //
            //  r0[0][0] =   mat[1*4+1] * invDet;
            //  r0[0][1] = - mat[0*4+1] * invDet;
            //  r0[1][0] = - mat[1*4+0] * invDet;
            //  r0[1][1] =   mat[0*4+0] * invDet;
            //
            //  // r1 = r0 * m1;
            //  r1[0][0] = r0[0][0] * mat[0*4+2] + r0[0][1] * mat[1*4+2];
            //  r1[0][1] = r0[0][0] * mat[0*4+3] + r0[0][1] * mat[1*4+3];
            //  r1[1][0] = r0[1][0] * mat[0*4+2] + r0[1][1] * mat[1*4+2];
            //  r1[1][1] = r0[1][0] * mat[0*4+3] + r0[1][1] * mat[1*4+3];
            //
            //  // r2 = m2 * r1;
            //  r2[0][0] = mat[2*4+0] * r1[0][0] + mat[2*4+1] * r1[1][0];
            //  r2[0][1] = mat[2*4+0] * r1[0][1] + mat[2*4+1] * r1[1][1];
            //  r2[1][0] = mat[3*4+0] * r1[0][0] + mat[3*4+1] * r1[1][0];
            //  r2[1][1] = mat[3*4+0] * r1[0][1] + mat[3*4+1] * r1[1][1];
            //
            //  // r3 = r2 - m3;
            //  r3[0][0] = r2[0][0] - mat[2*4+2];
            //  r3[0][1] = r2[0][1] - mat[2*4+3];
            //  r3[1][0] = r2[1][0] - mat[3*4+2];
            //  r3[1][1] = r2[1][1] - mat[3*4+3];
            //
            //  // r3.InverseSelf();
            //  det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
            //
            //  if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
            //      return false;
            //  }
            //
            //  invDet = 1.0f / det;
            //
            //  a = r3[0][0];
            //  r3[0][0] =   r3[1][1] * invDet;
            //  r3[0][1] = - r3[0][1] * invDet;
            //  r3[1][0] = - r3[1][0] * invDet;
            //  r3[1][1] =   a * invDet;
            //
            //  // r2 = m2 * r0;
            //  r2[0][0] = mat[2*4+0] * r0[0][0] + mat[2*4+1] * r0[1][0];
            //  r2[0][1] = mat[2*4+0] * r0[0][1] + mat[2*4+1] * r0[1][1];
            //  r2[1][0] = mat[3*4+0] * r0[0][0] + mat[3*4+1] * r0[1][0];
            //  r2[1][1] = mat[3*4+0] * r0[0][1] + mat[3*4+1] * r0[1][1];
            //
            //  // m2 = r3 * r2;
            //  mat[2*4+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0];
            //  mat[2*4+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1];
            //  mat[3*4+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0];
            //  mat[3*4+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1];
            //
            //  // m0 = r0 - r1 * m2;
            //  mat[0*4+0] = r0[0][0] - r1[0][0] * mat[2*4+0] - r1[0][1] * mat[3*4+0];
            //  mat[0*4+1] = r0[0][1] - r1[0][0] * mat[2*4+1] - r1[0][1] * mat[3*4+1];
            //  mat[1*4+0] = r0[1][0] - r1[1][0] * mat[2*4+0] - r1[1][1] * mat[3*4+0];
            //  mat[1*4+1] = r0[1][1] - r1[1][0] * mat[2*4+1] - r1[1][1] * mat[3*4+1];
            //
            //  // m1 = r1 * r3;
            //  mat[0*4+2] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0];
            //  mat[0*4+3] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1];
            //  mat[1*4+2] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0];
            //  mat[1*4+3] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1];
            //
            //  // m3 = -r3;
            //  mat[2*4+2] = -r3[0][0];
            //  mat[2*4+3] = -r3[0][1];
            //  mat[3*4+2] = -r3[1][0];
            //  mat[3*4+3] = -r3[1][1];
            //
            //  return true;

            if (_this.RowSize != 4 || _this.ColSize != 4)
            {
                return(null);
            }

            MatrixByArr  mat = new MatrixByArr(_this);
            const double MATRIX_INVERSE_EPSILON = 0.000000001;

            //	6*8+2*6 = 60 multiplications
            //		2*1 =  2 divisions
            double det, invDet;

            // r0 = m0.Inverse();
            det = mat[0, 0] * mat[1, 1] - mat[0, 1] * mat[1, 0];

            if (Math.Abs(det) < MATRIX_INVERSE_EPSILON)
            {
                Debug.Assert(false);
                return(null);
            }

            invDet = 1.0f / det;

            double r0_00 = mat[1, 1] * invDet;
            double r0_01 = -mat[0, 1] * invDet;
            double r0_10 = -mat[1, 0] * invDet;
            double r0_11 = mat[0, 0] * invDet;

            // r1 = r0 * m1;
            double r1_00 = r0_00 * mat[0, 2] + r0_01 * mat[1, 2];
            double r1_01 = r0_00 * mat[0, 3] + r0_01 * mat[1, 3];
            double r1_10 = r0_10 * mat[0, 2] + r0_11 * mat[1, 2];
            double r1_11 = r0_10 * mat[0, 3] + r0_11 * mat[1, 3];

            // r2 = m2 * r1;
            double r2_00 = mat[2, 0] * r1_00 + mat[2, 1] * r1_10;
            double r2_01 = mat[2, 0] * r1_01 + mat[2, 1] * r1_11;
            double r2_10 = mat[3, 0] * r1_00 + mat[3, 1] * r1_10;
            double r2_11 = mat[3, 0] * r1_01 + mat[3, 1] * r1_11;

            // r3 = r2 - m3;
            double r3_00 = r2_00 - mat[2, 2];
            double r3_01 = r2_01 - mat[2, 3];
            double r3_10 = r2_10 - mat[3, 2];
            double r3_11 = r2_11 - mat[3, 3];

            // r3.InverseSelf();
            det = r3_00 * r3_11 - r3_01 * r3_10;

            if (Math.Abs(det) < MATRIX_INVERSE_EPSILON)
            {
                Debug.Assert(false);
                return(null);
            }

            invDet = 1.0f / det;

            double r3_00_prv = r3_00;

            r3_00 = r3_11 * invDet;
            r3_01 = -r3_01 * invDet;
            r3_10 = -r3_10 * invDet;
            r3_11 = r3_00_prv * invDet;

            // r2 = m2 * r0;
            r2_00 = mat[2, 0] * r0_00 + mat[2, 1] * r0_10;
            r2_01 = mat[2, 0] * r0_01 + mat[2, 1] * r0_11;
            r2_10 = mat[3, 0] * r0_00 + mat[3, 1] * r0_10;
            r2_11 = mat[3, 0] * r0_01 + mat[3, 1] * r0_11;

            // m2 = r3 * r2;
            mat[2, 0] = r3_00 * r2_00 + r3_01 * r2_10;
            mat[2, 1] = r3_00 * r2_01 + r3_01 * r2_11;
            mat[3, 0] = r3_10 * r2_00 + r3_11 * r2_10;
            mat[3, 1] = r3_10 * r2_01 + r3_11 * r2_11;

            // m0 = r0 - r1 * m2;
            mat[0, 0] = r0_00 - r1_00 * mat[2, 0] - r1_01 * mat[3, 0];
            mat[0, 1] = r0_01 - r1_00 * mat[2, 1] - r1_01 * mat[3, 1];
            mat[1, 0] = r0_10 - r1_10 * mat[2, 0] - r1_11 * mat[3, 0];
            mat[1, 1] = r0_11 - r1_10 * mat[2, 1] - r1_11 * mat[3, 1];

            // m1 = r1 * r3;
            mat[0, 2] = r1_00 * r3_00 + r1_01 * r3_10;
            mat[0, 3] = r1_00 * r3_01 + r1_01 * r3_11;
            mat[1, 2] = r1_10 * r3_00 + r1_11 * r3_10;
            mat[1, 3] = r1_10 * r3_01 + r1_11 * r3_11;

            // m3 = -r3;
            mat[2, 2] = -r3_00;
            mat[2, 3] = -r3_01;
            mat[3, 2] = -r3_10;
            mat[3, 3] = -r3_11;

            return(mat);
        }
示例#27
0
        public static object LeastSquare
            (double[,] As, double[] bs
            , bool opt_get_stat = false
            )
        {
            if (HDebug.Selftest())
            {
                /// >> A = [ 1,3,2, 1 ; 4,5,6, 1 ; 7,9,9, 1 ; 11,11,12, 1 ; 13,16,15, 1 ]
                /// >> b = [1, 4, 6, 9, 12]'
                /// >> x = inv(A' * A) * (A' * b)
                ///     0.2171
                ///     0.2125
                ///     0.4205
                ///    -0.7339
                /// >> esti = A * x
                ///     0.9619
                ///     3.7203
                ///     6.4832
                ///     9.0381
                ///    11.7965
                /// >> corr(esti,b)
                ///     0.9976
                /// >> mean( (b-esti).^2 )
                ///     0.0712
                double[,] _A = new double[5, 3] {
                    { 1, 3, 2 }, { 4, 5, 6 }, { 7, 9, 9 }, { 11, 11, 12 }, { 13, 16, 15 }
                };
                double[] _b = new double[5] {
                    1, 4, 6, 9, 12
                };
                dynamic _out = LeastSquare(_A, _b, true);

                double   _matlab_corr = 0.9976;
                double   _matlab_mse  = 0.0712;
                double[] _matlab_x    = new double[] { 0.2171, 0.2125, 0.4205, -0.7339 };
                double[] _matlab_esti = new double[] { 0.9619, 3.7203, 6.4832, 9.0381, 11.7965 };

                double err1 = Math.Abs(_matlab_corr - _out.opt_estimation_corr);
                double err2 = Math.Abs(_matlab_mse - _out.opt_mean_square_err);
                double err3 = (_matlab_x - (Vector)_out.x).ToArray().MaxAbs();
                double err4 = (_matlab_esti - (Vector)_out.opt_estimation).ToArray().MaxAbs();

                HDebug.Assert(err1 < 0.0001);
                HDebug.Assert(err2 < 0.0001);
                HDebug.Assert(err3 < 0.0001);
                HDebug.Assert(err4 < 0.0001);
            }
            /// => A x = b
            ///
            /// => At A x = At b
            ///
            /// => AA * x = Ab
            /// => x = inv(AA) * Ab
            HDebug.Assert(As.GetLength(0) == bs.Length);
            int n = As.GetLength(0);
            int k = As.GetLength(1);

            Matrix A = Matrix.Zeros(n, k + 1);

            for (int c = 0; c < n; c++)
            {
                for (int r = 0; r < k; r++)
                {
                    A[c, r] = As[c, r];
                }
                A[c, k] = 1;
            }

            Matrix AA = LinAlg.MtM(A, A);
            Vector Ab = LinAlg.MtV(A, bs);

            Vector x;

            switch (k + 1)
            {
            case 2: { Matrix invAA = LinAlg.Inv2x2(AA.ToArray()); x = LinAlg.MV(invAA, Ab); } break;

            case 3: { Matrix invAA = LinAlg.Inv3x3(AA.ToArray()); x = LinAlg.MV(invAA, Ab); } break;

            case 4: { Matrix invAA = LinAlg.Inv4x4(AA.ToArray()); x = LinAlg.MV(invAA, Ab); } break;

            default:
                Matlab.PutMatrix("LinAlg_LeastSquare.AA", AA);
                Matlab.PutVector("LinAlg_LeastSquare.Ab", Ab);
                Matlab.Execute("LinAlg_LeastSquare.AA = inv(LinAlg_LeastSquare.AA);");
                Matlab.Execute("LinAlg_LeastSquare.x = LinAlg_LeastSquare.AA * LinAlg_LeastSquare.Ab;");
                x = Matlab.GetVector("LinAlg_LeastSquare.x");
                Matlab.Execute("clear LinAlg_LeastSquare;");
                break;
            }

            double?opt_mean_square_err = null;
            double?opt_estimation_corr = null;
            Vector opt_estimation      = null;

            if (opt_get_stat)
            {
                opt_estimation = new double[n];
                double avg_err2 = 0;
                for (int i = 0; i < n; i++)
                {
                    double esti = 0;
                    for (int j = 0; j < k; j++)
                    {
                        esti += As[i, j] * x[j];
                    }
                    esti += x[k];

                    opt_estimation[i] = esti;
                    avg_err2         += (esti - bs[i]) * (esti - bs[i]);
                }
                avg_err2 /= n;

                opt_mean_square_err = avg_err2;
                opt_estimation_corr = HMath.HCorr(opt_estimation, bs);
            }

            return(new
            {
                x = x,
                /// optional outputs
                opt_mean_square_err = opt_mean_square_err,
                opt_estimation_corr = opt_estimation_corr,
                opt_estimation = opt_estimation,
            });
        }
示例#28
0
        public static Tuple <MatrixByArr, Vector> Eig(MatrixByArr A)
        {
            if (HDebug.Selftest())
            {
                MatrixByArr tA = new double[, ] {
                    { 1, 2, 3 },
                    { 2, 9, 5 },
                    { 3, 5, 6 }
                };
                MatrixByArr tV = new double[, ] {
                    { -0.8879, 0.3782, 0.2618 },
                    { -0.0539, -0.6508, 0.7573 },
                    { 0.4568, 0.6583, 0.5983 }
                };
                Vector tD = new double[] { -0.4219, 2.7803, 13.6416 };

                Tuple <MatrixByArr, Vector> tVD = Eig(tA);
                Vector tV0 = tVD.Item1.GetColVector(0); double tD0 = tVD.Item2[0];
                Vector tV1 = tVD.Item1.GetColVector(1); double tD1 = tVD.Item2[1];
                Vector tV2 = tVD.Item1.GetColVector(2); double tD2 = tVD.Item2[2];

                HDebug.AssertTolerance(0.00000001, 1 - LinAlg.VtV(tV0, tV0));
                HDebug.AssertTolerance(0.00000001, 1 - LinAlg.VtV(tV1, tV1));
                HDebug.AssertTolerance(0.00000001, 1 - LinAlg.VtV(tV2, tV2));
                MatrixByArr tAA = tVD.Item1 * LinAlg.Diag(tVD.Item2) * tVD.Item1.Tr();
                HDebug.AssertTolerance(0.00000001, tA - tAA);

                //HDebug.AssertTolerance(0.0001, VD.Item1-tV);
                HDebug.AssertTolerance(0.0001, tVD.Item2 - tD);
            }

            HDebug.Assert(A.ColSize == A.RowSize);
            double[] eigval;
            double[,] eigvec;

            #region bool alglib.smatrixevd(double[,] a, int n, int zneeded, bool isupper, out double[] d, out double[,] z)
            /// Finding the eigenvalues and eigenvectors of a symmetric matrix
            ///
            /// The algorithm finds eigen pairs of a symmetric matrix by reducing it to
            /// tridiagonal form and using the QL/QR algorithm.
            ///
            /// Input parameters:
            ///     A       -   symmetric matrix which is given by its upper or lower
            ///                 triangular part.
            ///                 Array whose indexes range within [0..N-1, 0..N-1].
            ///     N       -   size of matrix A.
            ///     ZNeeded -   flag controlling whether the eigenvectors are needed or not.
            ///                 If ZNeeded is equal to:
            ///                  * 0, the eigenvectors are not returned;
            ///                  * 1, the eigenvectors are returned.
            ///     IsUpper -   storage format.
            ///
            /// Output parameters:
            ///     D       -   eigenvalues in ascending order.
            ///                 Array whose index ranges within [0..N-1].
            ///     Z       -   if ZNeeded is equal to:
            ///                  * 0, Z hasn’t changed;
            ///                  * 1, Z contains the eigenvectors.
            ///                 Array whose indexes range within [0..N-1, 0..N-1].
            ///                 The eigenvectors are stored in the matrix columns.
            ///
            /// Result:
            ///     True, if the algorithm has converged.
            ///     False, if the algorithm hasn't converged (rare case).
            ///
            ///   -- ALGLIB --
            ///      Copyright 2005-2008 by Bochkanov Sergey
            ///
            /// public static bool alglib.smatrixevd(
            ///     double[,] a,
            ///     int n,
            ///     int zneeded,
            ///     bool isupper,
            ///     out double[] d,
            ///     out double[,] z)
            #endregion
            bool success = alglib.smatrixevd(A, A.ColSize, 1, false, out eigval, out eigvec);

            if (success == false)
            {
                HDebug.Assert(false);
                return(null);
            }
            return(new Tuple <MatrixByArr, Vector>(eigvec, eigval));
        }
示例#29
0
        public static double DerivativeOfTriangleRadius(Vector p1, Vector p2, Vector p3, Vector dp1, Vector dp2, Vector dp3)
        {
            /// r = |p1-p2|*|p2-p3|*|p3-p1| / (2 area(p1,p2,p3))
            ///   = |p1-p2|*|p2-p3|*|p3-p1| / (2 |(p1-p2)x(p2-p3)|)
            /// r2 = ( |p1-p2|*|p2-p3|*|p3-p1| / (2 area(p1,p2,p3)) )^2
            ///    = |p1-p2|^2 * |p2-p3|^2 * |p3-p1|^2 / (4 |(p1-p2)x(p2-p3)|^2)
            /// (r+dr*t)  = R  = |(p1+dp1*t)-(p2+dp2*t)|*|(p2+dp2*t)-(p3+dp3*t)|*|(p3+dp3*t)-(p1+dp1*t)| / (2 area(p1+dp1*t,p2+dp2*t,p3+dp3*t))
            /// (r+dr*t)2 = R2 = { |(p1+dp1*t)-(p2+dp2*t)|*|(p2+dp2*t)-(p3+dp3*t)|*|(p3+dp3*t)-(p1+dp1*t)| / (2 area(p1+dp1*t,p2+dp2*t,p3+dp3*t)) }^2
            ///
            /// d(r+dr*t)/dt = dR_dt
            ///              = d(r+dr*t)/d((r+dr*t)^2) * d((r+dr*t)^2)/dt
            ///              = dR_dR2 * dR2_dt
            /// d(r+dr*t)/d((r+dr*t)^2) = dR_dR2
            ///                         = 1/(2*r)
            /// d((r+dr*t)^2)/dt = dR2_dt
            ///                = + (   Dotp31dp31 * P12dist2 * P23dist2
            ///                      + Dotp23dp31 * P12dist2 * P31dist2
            ///                      + Dotp12dp12 * P23dist2 * P31dist2
            ///                    )/(2 * Area2)
            ///                  - ( DotCroP12P23CroP12Dp23CroDp12P23 * P12dist2 * P23dist2 * P31dist2)/(2 * Area4)
            ///
            /// P12dist2 := ((p1x-p2x)^2+(p1y-p2y)^2+(p1z-p2z)^2) = (p1-p2).dist2
            /// P23dist2 := ((p2x-p3x)^2+(p2y-p3y)^2+(p2z-p3z)^2) = (p2-p3).dist2
            /// P31dist2 := ((p1x-p3x)^2+(p1y-p3y)^2+(p1z-p3z)^2) = (p1-p3).dist2
            /// Dotp12dp12 := ((dp1x-dp2x)*(p1x-p2x) + (dp1y-dp2y)*(p1y-p2y) + (dp1z-dp2z)*(p1z-p2z))
            ///             = [dp1x-dp2x, dp1y-dp2y, dp1z-dp2z] . [p1x-p2x, p1y-p2y, p1z-p2z]
            ///             = (dp1-dp2).(p1-p2)
            /// Dotp23dp31 := ((dp2x-dp3x)*(p2x-p3x) + (dp2y-dp3y)*(p2y-p3y) + (dp2z-dp3z)*(p2z-p3z))
            ///             = (dp2-dp3).(p2-p3)
            /// Dotp31dp31 := ((dp1x-dp3x)*(p1x-p3x) + (dp1y-dp3y)*(p1y-p3y) + (dp1z-dp3z)*(p1z-p3z))
            ///             = (dp1-dp3).(p1-p3)
            /// DotCroP12P23CroP12Dp23CroDp12P23 := Dot[Cross[p1-p2,p2-p3],(Cross[p1-p2,dp2-dp3]+Cross[dp1-dp2,p2-p3])]
            ///                                   = [(p1-p2)x(p2-p3)] . [(p1-p2)x(dp2-dp3) + (dp1-dp2)x(p2-p3)]

            if (HDebug.Selftest())
            #region selftest
            {
                Vector lp1  = new double[] { 1, 0, 0 };
                Vector lp2  = new double[] { 0, 1, 0 };
                Vector lp3  = new double[] { 0, 0, 1 };
                Vector ldp1 = new double[] { 0.1, 0.1, 0.1 };
                Vector ldp2 = new double[] { 1, 2, 3 };
                Vector ldp3 = new double[] { -1, 0, -0.1 };

                double r0  = Geometry.RadiusOfTriangle(lp1, lp2, lp3);
                double dr0 = DerivativeOfTriangleRadius(lp1, lp2, lp3, ldp1, ldp2, ldp3);
                List <Tuple <double, double, double, double> > drx = new List <Tuple <double, double, double, double> >();
                foreach (double dt in new double[] { 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001 })
                {
                    double t00 = -dt; double r00 = Geometry.RadiusOfTriangle(lp1 + t00 * ldp1, lp2 + t00 * ldp2, lp3 + t00 * ldp3);
                    double t01 = +dt; double r01 = Geometry.RadiusOfTriangle(lp1 + t01 * ldp1, lp2 + t01 * ldp2, lp3 + t01 * ldp3);
                    double dr1 = (r01 - r00) / (t01 - t00);
                    double dr2 = (r01 * r01 - r00 * r00) / (t01 - t00);

                    drx.Add(new Tuple <double, double, double, double>(dt, dr1, dr2, (0.5 / r0) * dr2));
                }
                double diff = dr0 - drx.Last().Item2;
                HDebug.AssertTolerance(0.00000001, diff);
            }
            #endregion

            double P12dist2   = (p1 - p2).Dist2;
            double P23dist2   = (p2 - p3).Dist2;
            double P31dist2   = (p1 - p3).Dist2;
            double Dotp12dp12 = LinAlg.VtV(dp1 - dp2, p1 - p2);
            double Dotp23dp31 = LinAlg.VtV(dp2 - dp3, p2 - p3);
            double Dotp31dp31 = LinAlg.VtV(dp1 - dp3, p1 - p3);
            double DotCroP12P23CroP12Dp23CroDp12P23 = LinAlg.VtV(LinAlg.CrossProd(p1 - p2, p2 - p3)
                                                                 , LinAlg.CrossProd(p1 - p2, dp2 - dp3) + LinAlg.CrossProd(dp1 - dp2, p2 - p3)
                                                                 );
            double Area2 = LinAlg.CrossProd(p1 - p2, p2 - p3).Dist2;
            double Area4 = Area2 * Area2;
            double Rad2  = P12dist2 * P23dist2 * P31dist2 / (4 * Area2);
            double Rad   = Math.Sqrt(Rad2);
            HDebug.AssertTolerance(0.00000001, Rad - Geometry.RadiusOfTriangle(p1, p2, p3));

            double t      = 1;
            double dR_dR2 = 0.5 / Rad;
            double dR2_dt = ((t * Dotp31dp31) * P12dist2 * P23dist2 + (t * Dotp23dp31) * P12dist2 * P31dist2 + (t * Dotp12dp12) * P23dist2 * P31dist2) / (2 * Area2)
                            - ((t * DotCroP12P23CroP12Dp23CroDp12P23) * P12dist2 * P23dist2 * P31dist2) / (2 * Area4);
            double dR_dt = dR_dR2 * dR2_dt;
            return(dR_dt);
        }
示例#30
0
        public static Matrix InvOfSubMatrixOfInv(this Matrix mat, IList <int> idxs, ILinAlg ila, string invtype, params object[] invopt)
        {
            if (HDebug.Selftest())
            {
                MatrixByArr tH = new double[, ] {
                    { 1, 2, 3, 4 }
                    , { 2, 5, 6, 7 }
                    , { 3, 6, 8, 9 }
                    , { 4, 7, 9, 10 }
                };
                MatrixByArr tInvH = new double[, ] {
                    { 0.5, -0.5, -1.5, 1.5 }                                 // = inv(tH)
                    , { -0.5, 1.5, -1.5, 0.5 }
                    , { -1.5, -1.5, 3.5, -1.5 }
                    , { 1.5, 0.5, -1.5, 0.5 }
                };
                MatrixByArr tInvH12 = new double[, ] {
                    { 0.5, -0.5 }                                            // = block matrix of tInvH
                    , { -0.5, 1.5 }
                };
                MatrixByArr tInvtInvH12 = new double[, ] {
                    { 3, 1 }                                            // = inv([ 0.5, -0.5])
                    , { 1, 1 }
                };                                                      //       [-0.5,  1.5]
                MatrixByArr ttInvtInvH12 = tH.InvOfSubMatrixOfInv(new int[] { 0, 1 }, ila, null).ToArray();
                HDebug.AssertTolerance(0.00000001, tInvtInvH12 - ttInvtInvH12);
            }

            int ColSize = mat.ColSize;
            int RowSize = mat.RowSize;

            if (ColSize != RowSize)
            {
                HDebug.Assert(false); return(null);
            }
            if (idxs.Count != idxs.HToHashSet().Count)
            {
                HDebug.Assert(false); return(null);
            }

            List <int> idxs0 = idxs.ToList();
            List <int> idxs1 = new List <int>();

            for (int i = 0; i < ColSize; i++)
            {
                if (idxs.Contains(i) == false)
                {
                    idxs1.Add(i);
                }
            }

            Matrix InvInvA;

            {
                Matrix A = mat.SubMatrix(idxs0, idxs0); Matrix B = mat.SubMatrix(idxs0, idxs1); // [A B]
                Matrix C = mat.SubMatrix(idxs1, idxs0); Matrix D = mat.SubMatrix(idxs1, idxs1); // [C D]

                /// http://en.wikipedia.org/wiki/Invertable_matrix#Blockwise_inversion
                ///
                /// M^-1 = [M_00 M_01] = [A B]-1 = [ (A - B D^-1 C)^-1  ... ]
                ///      = [M_10 M_11] = [C D]     [   ...              ... ]
                ///
                /// (inv(M))_00 = inv(A - B inv(D) C)
                /// inv((inv(M))_00) = (A - B inv(D) C)
                var AA       = ila.ToILMat(A);
                var BB       = ila.ToILMat(B);
                var CC       = ila.ToILMat(C);
                var DD       = ila.ToILMat(D);
                var InvDD    = ila.HInv(DD, invtype, invopt);
                var InvInvAA = AA - BB * InvDD * CC;
                //var xx = BB * InvDD * CC;

                InvInvA = InvInvAA.ToArray();
                AA.Dispose();
                BB.Dispose();
                CC.Dispose();
                DD.Dispose();
                InvDD.Dispose();
                InvInvAA.Dispose();
            }
            GC.Collect();
            return(InvInvA);
        }