/// <summary> /// Check that this is correct public key. /// </summary> /// <remarks> /// This method can be used to verify that public and private key are on the curve. /// </remarks> public static void Validate(GXPublicKey publicKey) { if (publicKey == null) { throw new ArgumentNullException("Invalid public key."); } GXByteBuffer bb = new GXByteBuffer(); bb.Set(publicKey.RawValue); int size = SchemeSize(publicKey.Scheme); GXBigInteger x = new GXBigInteger(bb.SubArray(1, size)); GXBigInteger y = new GXBigInteger(bb.SubArray(1 + size, size)); GXCurve curve = new GXCurve(publicKey.Scheme); y.Multiply(y); y.Mod(curve.P); GXBigInteger tmpX = new GXBigInteger(x); tmpX.Multiply(x); tmpX.Mod(curve.P); tmpX.Add(curve.A); tmpX.Multiply(x); tmpX.Add(curve.B); tmpX.Mod(curve.P); if (y.Compare(tmpX) != 0) { throw new ArgumentException("Public key validate failed. Public key is not valid ECDSA public key."); } }
/// <summary> /// Convert ECC point to Jacobian. /// </summary> /// <param name="p">ECC point.</param> /// <param name="A"></param> /// <param name="P">Prime number.</param> /// <returns></returns> private static GXEccPoint JacobianDouble(GXEccPoint p, GXBigInteger A, GXBigInteger P) { GXBigInteger ysq = new GXBigInteger(p.y); ysq.Multiply(p.y); ysq.Mod(P); GXBigInteger S = new GXBigInteger(p.x); S.Multiply(new GXBigInteger(4)); S.Multiply(ysq); S.Mod(P); GXBigInteger M = new GXBigInteger(p.x); M.Multiply(p.x); M.Multiply(new GXBigInteger(3)); GXBigInteger tmp = new GXBigInteger(p.z); tmp.Multiply(p.z); tmp.Multiply(p.z); tmp.Multiply(p.z); tmp.Multiply(A); M.Add(tmp); M.Mod(P); //nx GXBigInteger nx = new GXBigInteger(M); nx.Multiply(M); tmp = new GXBigInteger(S); tmp.Multiply(new GXBigInteger(2)); nx.Sub(tmp); nx.Mod(P); //ny GXBigInteger ny = new GXBigInteger(S); ny.Sub(nx); ny.Multiply(M); tmp = new GXBigInteger(ysq); tmp.Multiply(ysq); tmp.Multiply(new GXBigInteger(8)); ny.Sub(tmp); ny.Mod(P); //nz GXBigInteger nz = new GXBigInteger(p.y); nz.Multiply(p.z); nz.Multiply(new GXBigInteger(2)); nz.Mod(P); return(new GXEccPoint(nx, ny, nz)); }
/// <summary> /// Sign given data using public and private key. /// </summary> /// <param name="data">Data to sign.</param> /// <returns>Signature</returns> public byte[] Sign(byte[] data) { if (PrivateKey == null) { throw new ArgumentException("Invalid private key."); } GXBigInteger msg; if (PrivateKey.Scheme == Ecc.P256) { using (SHA256 sha = new SHA256CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } } else { using (SHA384 sha = new SHA384CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } } GXBigInteger pk = new GXBigInteger(PrivateKey.RawValue); GXEccPoint p; GXBigInteger n; GXBigInteger r; GXBigInteger s; do { n = GetRandomNumber(PrivateKey.Scheme); p = new GXEccPoint(curve.G.x, curve.G.y, new GXBigInteger(1)); Multiply(p, n, curve.N, curve.A, curve.P); r = p.x; r.Mod(curve.N); n.Inv(curve.N); //s s = new GXBigInteger(r); s.Multiply(pk); s.Add(msg); s.Multiply(n); s.Mod(curve.N); } while (r.IsZero || s.IsZero); GXByteBuffer signature = new GXByteBuffer(); signature.Set(r.ToArray()); signature.Set(s.ToArray()); return(signature.Array()); }
public void Inv(GXBigInteger value) { if (!IsZero) { GXBigInteger lm = new GXBigInteger(1); GXBigInteger hm = new GXBigInteger(0); GXBigInteger low = new GXBigInteger(this); low.Mod(value); GXBigInteger high = new GXBigInteger(value); while (!(low.IsZero || low.IsOne)) { GXBigInteger r = new GXBigInteger(high); r.Div(low); GXBigInteger tmp = new GXBigInteger(lm); tmp.Multiply(r); GXBigInteger nm = new GXBigInteger(hm); nm.Sub(tmp); tmp = new GXBigInteger(low); tmp.Multiply(r); high.Sub(tmp); // lm, low, hm, high = nm, new, lm, low tmp = low; low = new GXBigInteger(high); high = tmp; hm = new GXBigInteger(lm); lm = new GXBigInteger(nm); } Data = lm.Data; negative = lm.negative; Mod(value); } }
/// <summary> /// Verify that signature matches the data. /// </summary> /// <param name="signature">Generated signature.</param> /// <param name="data">Data to valuate.</param> /// <returns></returns> public bool Verify(byte[] signature, byte[] data) { GXBigInteger msg; if (PublicKey == null) { if (PrivateKey == null) { throw new ArgumentNullException("Invalid private key."); } PublicKey = PrivateKey.GetPublicKey(); } if (PublicKey.Scheme == Ecc.P256) { using (SHA256 sha = new SHA256CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } } else { using (SHA384 sha = new SHA384CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } } GXByteBuffer pk = new GXByteBuffer(PublicKey.RawValue); GXByteBuffer bb = new GXByteBuffer(signature); int size = SchemeSize(PublicKey.Scheme); GXBigInteger sigR = new GXBigInteger(bb.SubArray(0, size)); GXBigInteger sigS = new GXBigInteger(bb.SubArray(size, size)); GXBigInteger inv = sigS; inv.Inv(curve.N); // Calculate u1 and u2. GXEccPoint u1 = new GXEccPoint(curve.G.x, curve.G.y, new GXBigInteger(1)); GXEccPoint u2 = new GXEccPoint(new GXBigInteger(pk.SubArray(1, size)), new GXBigInteger(pk.SubArray(1 + size, size)), new GXBigInteger(1)); GXBigInteger n = msg; n.Multiply(inv); n.Mod(curve.N); Multiply(u1, n, curve.N, curve.A, curve.P); n = new GXBigInteger(sigR); n.Multiply(inv); n.Mod(curve.N); Multiply(u2, n, curve.N, curve.A, curve.P); u1.z = new GXBigInteger(1); u2.z = new GXBigInteger(1); JacobianAdd(u1, u2, curve.A, curve.P); FromJacobian(u1, curve.P); return(sigR.Compare(u1.x) == 0); }
/// <summary> /// Verify that signature matches the data. /// </summary> /// <param name="signature">Generated signature.</param> /// <param name="data">Data to valuate.</param> /// <returns></returns> public bool Verify(byte[] signature, byte[] data) { GXBigInteger msg; using (SHA256 sha = new SHA256CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } if (PublicKey == null) { PublicKey = PrivateKey.GetPublicKey(); } GXByteBuffer pk = new GXByteBuffer(PublicKey.RawValue); GXByteBuffer bb = new GXByteBuffer(signature); GXBigInteger sigR = new GXBigInteger(bb.SubArray(0, 32)); GXBigInteger sigS = new GXBigInteger(bb.SubArray(32, 32)); GXBigInteger inv = sigS; inv.Inv(curve.N); // Calculate u1 and u2. GXEccPoint u1 = new GXEccPoint(curve.G.x, curve.G.y, new GXBigInteger(1)); GXEccPoint u2 = new GXEccPoint(new GXBigInteger(pk.SubArray(1, 32)), new GXBigInteger(pk.SubArray(33, 32)), new GXBigInteger(1)); GXBigInteger n = msg; n.Multiply(inv); n.Mod(curve.N); Multiply(u1, n, curve.N, curve.A, curve.P); n = new GXBigInteger(sigR); n.Multiply(inv); n.Mod(curve.N); Multiply(u2, n, curve.N, curve.A, curve.P); // add = Math.add(u1, u2, P = curve.P, A = curve.A) u1.z = new GXBigInteger(1); u2.z = new GXBigInteger(1); JacobianAdd(u1, u2, curve.A, curve.P); FromJacobian(u1, curve.P); return(sigR.Compare(u1.x) == 0); }
/// <summary> /// Sign given data using public and private key. /// </summary> /// <param name="data">Data to sign.</param> /// <returns>Signature</returns> public byte[] Sign(byte[] data) { if (PrivateKey == null) { throw new ArgumentException("Invalid private key."); } GXBigInteger msg; using (SHA256 sha = new SHA256CryptoServiceProvider()) { msg = new GXBigInteger(sha.ComputeHash(data)); } GXBigInteger pk = new GXBigInteger(PrivateKey.RawValue); GXEccPoint p; GXBigInteger n = new GXBigInteger(10); GXBigInteger r; GXBigInteger s; do { if (CustomRandomNumber != null) { n = CustomRandomNumber; } else { n = GetRandomNumber(PrivateKey.Scheme); } p = new GXEccPoint(curve.G.x, curve.G.y, new GXBigInteger(1)); Multiply(p, n, curve.N, curve.A, curve.P); r = p.x; r.Mod(curve.N); n.Inv(curve.N); //s s = new GXBigInteger(r); s.Multiply(pk); s.Add(msg); s.Multiply(n); s.Mod(curve.N); } while (r.IsZero || s.IsZero); byte recoveryId; if (p.y.IsOne) { recoveryId = 1; } else { recoveryId = 0; } if (p.y.Compare(curve.N) == 1) { recoveryId += 2; } GXByteBuffer signature = new GXByteBuffer(); signature.Set(r.ToArray()); signature.Set(s.ToArray()); return(signature.Array()); }
/// <summary> /// Y^2 = X^3 + A*X + B (mod p) /// </summary> /// <param name="p"></param> /// <param name="q"></param> /// <param name="A"></param> /// <param name="P">Prime number</param> private static void JacobianAdd(GXEccPoint p, GXEccPoint q, GXBigInteger A, GXBigInteger P) { if (!(p.y.IsZero || q.y.IsZero)) { GXBigInteger U1 = new GXBigInteger(p.x); U1.Multiply(q.z); U1.Multiply(q.z); U1.Mod(P); GXBigInteger U2 = new GXBigInteger(p.z); U2.Multiply(p.z); U2.Multiply(q.x); U2.Mod(P); GXBigInteger S1 = new GXBigInteger(p.y); S1.Multiply(q.z); S1.Multiply(q.z); S1.Multiply(q.z); S1.Mod(P); GXBigInteger S2 = new GXBigInteger(q.y); S2.Multiply(p.z); S2.Multiply(p.z); S2.Multiply(p.z); S2.Mod(P); if (U1.Compare(U2) == 0) { if (S1.Compare(S2) != 0) { p.x = p.y = new GXBigInteger(0); p.z = new GXBigInteger(1); } else { p.x = A; p.y = P; } } //H GXBigInteger H = U2; H.Sub(U1); //R GXBigInteger R = S2; R.Sub(S1); GXBigInteger H2 = new GXBigInteger(H); H2.Multiply(H); H2.Mod(P); GXBigInteger H3 = new GXBigInteger(H); H3.Multiply(H2); H3.Mod(P); GXBigInteger U1H2 = new GXBigInteger(U1); U1H2.Multiply(H2); U1H2.Mod(P); GXBigInteger tmp = new GXBigInteger(2); tmp.Multiply(U1H2); //nx GXBigInteger nx = new GXBigInteger(R); nx.Multiply(R); nx.Sub(H3); nx.Sub(tmp); nx.Mod(P); //ny GXBigInteger ny = R; tmp = new GXBigInteger(U1H2); tmp.Sub(nx); ny.Multiply(tmp); tmp = new GXBigInteger(S1); tmp.Multiply(H3); ny.Sub(tmp); ny.Mod(P); //nz GXBigInteger nz = H; nz.Multiply(p.z); nz.Multiply(q.z); nz.Mod(P); p.x = nx; p.y = ny; p.z = nz; } }