public override int Run(string[] remainingArguments)
        {
            this.CheckRequiredArguments();
            if (remainingArguments.Length < 1)
            {
                throw new ArgumentNullException("dataset");
            }
            string datasetName = remainingArguments[0];
            string checkpoint  = Gpt2Trainer.ProcessCheckpointConfig(this.Checkpoint,
                                                                     modelName: this.ModelName,
                                                                     runName: this.RunName);

            var    encoder       = Gpt2Encoder.LoadEncoder(this.ModelName);
            string searchPattern = this.Include ?? "*";
            var    dataset       = searchPattern.EndsWith("*.csv")
                ? LoadCsv(encoder, root: datasetName, field: this.ColumnName)
                : Gpt2Trainer.LoadDataset(encoder, path: datasetName, pattern: searchPattern);
            var hParams = Gpt2Model.LoadHParams(this.ModelName);
            var random  = this.Seed == null ? new Random() : new Random(this.Seed.Value);
            var stop    = new CancellationTokenSource();

            Console.CancelKeyPress += delegate { stop.Cancel(); };
            new Gpt2Trainer(dataset, encoder, hParams, this.BatchSize, this.SampleLength, random)
            .Train(checkpoint, this.RunName, stop.Token);

            return(0);
        }
        public override int Run(string[] remainingArguments)
        {
            this.CheckRequiredArguments();
            if (remainingArguments.Length < 1)
            {
                throw new ArgumentNullException("dataset");
            }
            string datasetName = remainingArguments[0];
            string checkpoint  = Gpt2Checkpoints.ProcessCheckpointConfig(
                gpt2Root: Environment.CurrentDirectory,
                checkpoint: this.Checkpoint,
                modelName: this.ModelName,
                runName: this.RunName);

            var    encoder       = Gpt2Encoder.LoadEncoder(this.ModelName);
            string searchPattern = this.Include ?? "*";
            var    dataset       = searchPattern.EndsWith("*.csv")
                ? LoadCsv(encoder, root: datasetName, field: this.ColumnName)
                : Gpt2Dataset.LoadDataset(encoder, path: datasetName, pattern: searchPattern);

            if (dataset.Count == 0)
            {
                Console.Error.WriteLine("The dataset is empty!");
                return(-1);
            }
            var hParams = Gpt2Model.LoadHParams(this.ModelName);
            var random  = this.Seed == null ? new Random() : new Random(this.Seed.Value);
            var stop    = new CancellationTokenSource();

            Console.CancelKeyPress += delegate { stop.Cancel(); };
            dynamic config = config_pb2.ConfigProto();

            config.gpu_options.allow_growth = true;
            new Gpt2Trainer(dataset, encoder, hParams, this.BatchSize, this.SampleLength, random)
            {
                SaveEvery   = this.SaveEvery,
                SampleNum   = this.SampleNum,
                SampleEvery = this.SampleEvery,
            }
            .Train(checkpoint, this.RunName,
                   sessionConfig: config,
                   counter: checkpoint == "fresh" ? 1 : (int?)null,
                   cancellation: stop.Token);

            return(0);
        }
        /// <summary>
        /// Interactively run the model
        /// </summary>
        /// <param name="modelName">Which model to use</param>
        /// <param name="checkpoint">Which checkpoint to load</param>
        /// <param name="seed">Seed for random number generators, fix seed to reproduce results</param>
        /// <param name="sampleCount">Number of samples to return total</param>
        /// <param name="batchSize">Number of batches (only affects speed/memory).  Must divide sampleCount.</param>
        /// <param name="length">Number of tokens in generated text, if null (default), is
        ///     determined by model hyperparameters</param>
        /// <param name="temperature">randomness in boltzmann distribution.
        ///     Lower temperature results in less random completions. As the
        ///     temperature approaches zero, the model will become deterministic and
        ///     repetitive. Higher temperature results in more random completions.</param>
        /// <param name="topK">Controls diversity. 1 means only 1 word is
        ///     considered for each step (token), resulting in deterministic completions,
        ///     while 40 means 40 words are considered at each step. 0 (default) is a
        ///     special setting meaning no restrictions. 40 generally is a good value.
        /// </param>
        public static void Run(string modelName = "117M", string checkpoint = null, int?seed = null,
                               int sampleCount  = 1,
                               int batchSize    = 1, int?length = null, float temperature = 1, int topK = 0)
        {
            if (sampleCount % batchSize != 0)
            {
                throw new ArgumentException();
            }

            var encoder = Gpt2Encoder.LoadEncoder(modelName);
            var hParams = Gpt2Model.LoadHParams(modelName);

            int nCtx = ((dynamic)hParams).n_ctx;

            if (length is null)
            {
                length = nCtx;
            }
            else if (length > nCtx)
            {
                throw new ArgumentException("Can't get samples longer than window size: " + hParams.get("n_ctx"));
            }

            new Session(graph: new Graph()).UseSelf(sess => {
                var context = tf.placeholder(tf.int32, new TensorShape(batchSize, null));
                tf.set_random_seed(seed);

                var output = Gpt2Sampler.SampleSequence(
                    hParams: hParams,
                    length: length.Value,
                    context: context,
                    batchSize: batchSize,
                    temperature: temperature,
                    topK: topK);

                var saver  = new Saver();
                checkpoint = checkpoint ?? tf.train.latest_checkpoint(Path.Combine("models", modelName));
                saver.restore(sess, checkpoint);

                while (true)
                {
                    string text;
                    do
                    {
                        Console.Write("Model prompt >>> ");
                        text = Console.ReadLine();
                        if (string.IsNullOrEmpty(text))
                        {
                            Console.WriteLine("Prompt should not be empty");
                        }
                    } while (string.IsNullOrEmpty(text));

                    var contextTokens = encoder.Encode(text);
                    int generated     = 0;
                    foreach (var _ in Enumerable.Range(0, sampleCount / batchSize))
                    {
                        var @out = sess.run(output, feed_dict: new PythonDict <object, object> {
                            [context] = Enumerable.Repeat(contextTokens, batchSize),
                        })[Range.All, Range.StartAt(contextTokens.Count)];
                        foreach (int i in Enumerable.Range(0, batchSize))
                        {
                            generated++;
                            ndarray part = @out[i];
                            text         = encoder.Decode(part);
                            Console.WriteLine($"{Delimiter} SAMPLE {generated} {Delimiter}");
                            Console.WriteLine(text);
                        }
                    }
                    Console.Write(Delimiter);
                    Console.WriteLine(Delimiter);
                }
            });
        }