/// <summary> /// 计算绕地航天器主要的加速度。 /// Computes the acceleration of an Earth orbiting satellite due to /// - the Earth's harmonic gravity field, /// - the gravitational perturbations of the Sun and Moon /// - the solar radiation pressure and /// - the atmospheric drag /// </summary> /// <param name="Mjd_TT"> Mjd_TT Terrestrial Time (Modified Julian Date)</param> /// <param name="satXyzIcrf"> r 卫星在国际天球参考框架的位置 Satellite position vector in the ICRF/EME2000 system</param> /// <param name="satVelocityIcrf"> v 卫星在国际天球参考框架的速度 Satellite velocity vector in the ICRF/EME2000 system</param> /// <param name="Area"> Area Cross-section </param> /// <param name="mass"> mass 质量 Spacecraft mass</param> /// <param name="solarRadiPresCoeff"> coefOfRadiation 光压系数 Radiation pressure coefficient</param> /// <param name="atmDragCoefficient"> coefOfDrag 大气阻力系数 Drag coefficient</param> /// <returns> Acceleration (a=d^2r/dt^2) in the ICRF/EME2000 system</returns> public static Geo.Algorithm.Vector AccelerOfMainForces(double Mjd_TT, Geo.Algorithm.Vector satXyzIcrf, Geo.Algorithm.Vector satVelocityIcrf, double Area, double mass, double solarRadiPresCoeff, double atmDragCoefficient) { double Mjd_UT1; Geo.Algorithm.Vector a = new Geo.Algorithm.Vector(3), r_Sun = new Geo.Algorithm.Vector(3), r_Moon = new Geo.Algorithm.Vector(3); Matrix T = new Matrix(3, 3), E = new Matrix(3, 3); // Acceleration due to harmonic gravity field Mjd_UT1 = Mjd_TT; T = IERS.NutMatrix(Mjd_TT) * IERS.PrecessionMatrix(MJD_J2000, Mjd_TT); E = IERS.GreenwichHourAngleMatrix(Mjd_UT1) * T; a = AccelerOfHarmonicGraviFiled(satXyzIcrf, E, Grav.GM, Grav.R_ref, Grav.CS, Grav.n_max, Grav.m_max); // Luni-solar perturbations r_Sun = CelestialUtil.Sun(Mjd_TT); r_Moon = CelestialUtil.Moon(Mjd_TT); a += AccelerOfPointMass(satXyzIcrf, r_Sun, OrbitConsts.GM_Sun); a += AccelerOfPointMass(satXyzIcrf, r_Moon, OrbitConsts.GM_Moon); // Solar radiation pressure a += CelestialUtil.Illumination(satXyzIcrf, r_Sun) * AccelerOfSolarRadiPressure(satXyzIcrf, r_Sun, Area, mass, solarRadiPresCoeff, OrbitConsts.PressureOfSolarRadiationPerAU, AU); // Atmospheric drag a += AccelerDragOfAtmos(Mjd_TT, satXyzIcrf, satVelocityIcrf, T, Area, mass, atmDragCoefficient); // Acceleration return(a); }
static void Main0(string[] args) { // Variables int i; // Loop counter double MJD_GPS, MJD_TT; // Modified Julian Date (GPS,TT) double MJD_UTC, MJD_UT1; // Modified Julian Date (UTC,UT1) Matrix P = new Matrix(3, 3), N = new Matrix(3, 3); // Precession/nutation matrix Matrix Theta = new Matrix(3, 3); // Sidereal Time matrix Matrix S = new Matrix(3, 3), dTheta = new Matrix(3, 3); // and derivative Matrix Pi = new Matrix(3, 3); // Polar motion matrix Matrix U = new Matrix(3, 3), dU = new Matrix(3, 3); // ICRS to ITRS transformation and derivative Vector r_WGS = new Vector(3), v_WGS = new Vector(3); // Position/velocity in the Earth-fixed frame Vector r = new Vector(3), v = new Vector(3); // Position/velocity in the ICRS Vector y = new Vector(6), Kep = new Vector(6); // Satte vector and Keplerian elements // Header var endl = "\r\n"; var info = "Exercise 5-2: Velocity in the Earth-fixed frame" + endl + endl; Console.WriteLine(info); // Earth Orientation Parameters (UT1-UTC[s],UTC-TAI[s], x["], y["]) // (from IERS Bulletin B #135 and C #16; valid for 1999/03/04 0:00 UTC) IERS IERS = new IERS(0.6492332, -32.0, 0.06740, 0.24173); // Date MJD_GPS = DateUtil.DateToMjd(1999, 03, 04, 0, 0, 0.0); MJD_UTC = MJD_GPS - IERS.GetGPS_UTC(MJD_GPS) / 86400.0; MJD_UT1 = MJD_UTC + IERS.GetUT1_UTC(MJD_UTC) / 86400.0; MJD_TT = MJD_UTC + IERS.GetTT_UTC(MJD_UTC) / 86400.0; // Earth-fixed state vector of GPS satellite #PRN15 // (from NIMA ephemeris nim09994.eph; WGS84(G873) system) r_WGS = new Vector(19440.953805e+3, 16881.609273e+3, -6777.115092e+3); // [m] v_WGS = new Vector(-8111.827456e-1, -2573.799137e-1, -30689.508125e-1); // [m/s] // ICRS to ITRS transformation matrix and derivative P = IERS.PrecessionMatrix(OrbitConsts.MJD_J2000, MJD_TT); // IAU 1976 Precession N = IERS.NutMatrix(MJD_TT); // IAU 1980 Nutation Theta = IERS.GreenwichHourAngleMatrix(MJD_UT1); // Earth rotation Pi = IERS.PoleMatrix(MJD_UTC); // Polar motion S[0, 1] = 1.0; S[1, 0] = -1.0; // Derivative of Earth rotation dTheta = OrbitConsts.RotationSpeedOfEarth_Rad * S * Theta; // matrix [1/s] U = Pi * Theta * N * P; // ICRS to ITRS transformation dU = Pi * dTheta * N * P; // Derivative [1/s] // Transformation from WGS to ICRS r = U.Transpose() * r_WGS; v = U.Transpose() * v_WGS + dU.Transpose() * r_WGS; // Orbital elements y = r.Stack(v); Kep = Kepler.Elements(OrbitConsts.GM_Earth, y); // Output info = "Date" + endl + endl + " " + DateUtil.MjdToDateTimeString(MJD_GPS) + " GPS" + endl + " " + DateUtil.MjdToDateTimeString(MJD_UTC) + " UTC" + endl + " " + DateUtil.MjdToDateTimeString(MJD_UT1) + " UT1" + endl + " " + DateUtil.MjdToDateTimeString(MJD_TT) + " TT " + endl + endl; Console.WriteLine(info); info = "WGS84 (G873) State vector:" + endl + endl; info += " Position "; for (i = 0; i < 3; i++) { info += String.Format("{0, 10:F6}", r_WGS[i] / 1000.0); } ; info += " [km]"; Console.WriteLine(info); info = " Velocity "; for (i = 0; i < 3; i++) { info += String.Format("{0, 10:F6}", v_WGS[i] / 1000.0); } ; info += " [km/s]" + endl + endl; Console.WriteLine(info); info = "ICRS-ITRS transformation" + endl + endl + String.Format("{0, 10:F6}", U) + endl; info += "Derivative of ICRS-ITRS transformation [10^(-4)/s]" + endl + endl + String.Format("{0, 10:F6}", dU * 1.0e4) + endl; info += "ICRS State vector:" + endl; Console.WriteLine(info); info = " Position "; for (i = 0; i < 3; i++) { info += String.Format("{0, 14:F6}", r[i] / 1000.0); } ; info += " [km]"; Console.WriteLine(info); info = " Velocity "; for (i = 0; i < 3; i++) { info += String.Format("{0, 14:F6}", v[i] / 1000.0); } ; info += " [km/s]" + endl + endl; Console.WriteLine(info); info = "Orbital elements:" + endl + endl + " Semimajor axis " + String.Format("{0, 10:F3}", Kep[0] / 1000.0) + " km" + endl + " Eccentricity " + String.Format("{0, 10:F7}", Kep[1]) + endl + " Inclination " + String.Format("{0, 10:F3}", Kep[2] * OrbitConsts.DegPerRad) + " deg" + endl + " RA ascend. node " + String.Format("{0, 10:F3}", Kep[3] * OrbitConsts.DegPerRad) + " deg" + endl + " Arg. of perigee " + String.Format("{0, 10:F3}", Kep[4] * OrbitConsts.DegPerRad) + " deg" + endl + " Mean anomaly " + String.Format("{0, 10:F3}", Kep[5] * OrbitConsts.DegPerRad) + " deg" + endl; Console.WriteLine(info); Console.ReadKey(); }
static void Main0(string[] args) { // Variables double MJD_UTC; // Modified Julian Date (UTC) double MJD_UT1; // Modified Julian Date (UTC) double MJD_TT; // Modified Julian Date (TT) Matrix P = new Matrix(3, 3); // Precession matrix (ICRS -> mean-of-date) Matrix N = new Matrix(3, 3); // Nutation matrix (mean-of-date -> true-of-date) Matrix Theta = new Matrix(3, 3); // Sidereal Time matrix (tod -> pseudo-Earth-fixed) Matrix Pi = new Matrix(3, 3); // Polar motion matrix (pseudo-Earth-fixed -> ITRS) // Header var info = "Exercise 5-1: Transformation from celestial " + "to terrestrial reference system" + "\r\n"; Console.WriteLine(info); // Earth Orientation Parameters (UT1-UTC[s],UTC-TAI[s], x["], y["]) // (from IERS Bulletin B #135 and C #16; valid for 1999/03/04 0:00 UTC) IERS IERS = new IERS(0.6492332, -32.0, 0.06740, 0.24173); // Date MJD_UTC = DateUtil.DateToMjd(1999, 03, 04, 0, 0, 0.0); MJD_UT1 = MJD_UTC + IERS.GetUT1_UTC(MJD_UTC) / 86400.0; MJD_TT = MJD_UTC + IERS.GetTT_UTC(MJD_UTC) / 86400.0; // IAU 1976 Precession // (ICRF to mean equator and equinox of date) P = IERS.PrecessionMatrix(OrbitConsts.MJD_J2000, MJD_TT); // IAU 1980 Nutation // (Transformation to the true equator and equinox) N = IERS.NutMatrix(MJD_TT); // Apparent Sidereal Time // Rotation about the Celestial Ephemeris Pole Theta = IERS.GreenwichHourAngleMatrix(MJD_UT1); // Note: here we evaluate the equation of the // equinoxes with the MJD_UT1 time argument // (instead of MJD_TT) // Polar motion // (Transformation from the CEP to the IRP of the ITRS) Pi = IERS.PoleMatrix(MJD_UTC); // Note: the time argument of polar motion series // is not rigorously defined, but any differences // are negligible // Output var endl = "\r\n"; info = "Date" + "\r\n" + " " + DateUtil.MjdToDateTimeString(MJD_UTC) + " UTC" + endl + " " + DateUtil.MjdToDateTimeString(MJD_UT1) + " UT1" + endl + " " + DateUtil.MjdToDateTimeString(MJD_TT) + " TT " + endl + endl + endl; Console.WriteLine(info); info = "IAU 1976 Precession matrix (ICRS to tod)" + endl + P.ToString(); Console.WriteLine(info); info = "IAU 1980 Nutation matrix (tod to mod)" + endl + N.ToString(); Console.WriteLine(info); info = "Earth Rotation matrix" + endl + Theta.ToString(); Console.WriteLine(info); info = "Polar motion matrix" + endl + Pi.ToString(); Console.WriteLine(info); info = "ICRS-ITRS transformation" + endl + (Pi * Theta * N * P).ToString(); Console.WriteLine(info); Console.ReadKey(); }