public static Tensor Concat(this Session session, IList <Tensor> xs, int axis) { const string ActionName = "concat"; if (axis < 0) { throw new ArgumentException(Properties.Resources.E_NegativeAxisIndex, nameof(axis)); } return(session.RunOperation( ActionName, () => { bool calculateGradient = session.CalculateGradients && xs.Any(x => x.CalculateGradient); Tensor y = session.AllocateTensor(ActionName, Shape.Concat(xs.Select(x => x.Shape).ToArray(), axis), calculateGradient); ArrayOperations.Concat(xs, axis, y, false); #if !NOLEARNING if (calculateGradient) { session.Push(ActionName, () => ArrayOperations.Split(y, axis, xs, true)); } #endif return y; })); }
public static Tensor[] Split(this Session session, Tensor x, int axis, int[] sizes) { const string ActionName = "split"; if (axis < 0) { throw new ArgumentException(Properties.Resources.E_NegativeAxisIndex, nameof(axis)); } return(session.RunOperation( ActionName, () => { bool calculateGradient = session.CalculateGradients && x.CalculateGradient; // check sizes int ydim = sizes.Length; int sum = 0; for (int i = 0; i < ydim; i++) { sum += sizes[i]; } if (sum != x.Shape.Axes[axis]) { throw new ArgumentException("The sub tensors sizes must be provided."); } // allocate destination Tensor[] ys = new Tensor[ydim]; for (int i = 0; i < ydim; i++) { ys[i] = session.AllocateTensor(ActionName, x.Shape.Reshape(axis, sizes[i]), calculateGradient); } ArrayOperations.Split(x, axis, ys, false); #if !NOLEARNING if (calculateGradient) { session.Push(ActionName, () => ArrayOperations.Concat(ys, axis, x, true)); // return copy of the array; calling method can replace its content; our closure keeps the array, not its items return ys.ToArray(); } #endif return ys; })); }
public static Tensor[] Split(this Session session, Tensor x, int axis, int numberOfSplits) { const string ActionName = "split"; if (axis < 0) { throw new ArgumentException(Properties.Resources.E_NegativeAxisIndex, nameof(axis)); } // check number of splits if ((x.Axes[axis] % numberOfSplits) != 0) { throw new ArgumentException("The number of tensors to split into must evenly divide the tensor split dimension.", nameof(numberOfSplits)); } return(session.RunOperation( ActionName, () => { bool calculateGradient = session.CalculateGradients && x.CalculateGradient; // allocate destination Tensor[] ys = session.AllocateTensors( ActionName, numberOfSplits, x.Shape.Reshape(axis, x.Axes[axis] / numberOfSplits), calculateGradient); ArrayOperations.Split(x, axis, ys, false); #if !NOLEARNING if (calculateGradient) { session.Push(ActionName, () => ArrayOperations.Concat(ys, axis, x, true)); // return copy of the array; calling method can replace its content; our closure keeps the array, not its items return ys.ToArray(); } #endif return ys; })); }