public static int TIFFWriteScanline(TIFF tif, byte[] buf, uint row, ushort sample) { string module="TIFFWriteScanline"; if(!((tif.tif_flags&TIF_FLAGS.TIFF_BEENWRITING)!=0||TIFFWriteCheck(tif, false, module))) return -1; // Handle delayed allocation of data buffer. This // permits it to be sized more intelligently (using // directory information). if(!BUFFERCHECK(tif)) return -1; TIFFDirectory td=tif.tif_dir; bool imagegrew=false; // Extend image length if needed // (but only for PlanarConfig=1). if(row>=td.td_imagelength) { // extend image if(td.td_planarconfig==PLANARCONFIG.SEPARATE) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "Can not change \"ImageLength\" when using separate planes"); return -1; } td.td_imagelength=row+1; imagegrew=true; } // Calculate strip and check for crossings. uint strip; if(td.td_planarconfig==PLANARCONFIG.SEPARATE) { if(sample>=td.td_samplesperpixel) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "{0}: Sample out of range, max {1}", sample, td.td_samplesperpixel); return -1; } strip=sample*td.td_stripsperimage+row/td.td_rowsperstrip; } else strip=row/td.td_rowsperstrip; // Check strip array to make sure there's space. We don't support // dynamically growing files that have data organized in separate // bitplanes because it's too painful. In that case we require that // the imagelength be set properly before the first write (so that the // strips array will be fully allocated above). if(strip>=td.td_nstrips&&!TIFFGrowStrips(tif, 1, module)) return -1; if(strip!=tif.tif_curstrip) { // Changing strips -- flush any data present. if(!TIFFFlushData(tif)) return -1; tif.tif_curstrip=strip; // Watch out for a growing image. The value of strips/image // will initially be 1 (since it can't be deduced until the // imagelength is known). if(strip>=td.td_stripsperimage&&imagegrew) td.td_stripsperimage=TIFFhowmany(td.td_imagelength, td.td_rowsperstrip); tif.tif_row=(strip%td.td_stripsperimage)*td.td_rowsperstrip; if((tif.tif_flags&TIF_FLAGS.TIFF_CODERSETUP)==0) { if(!tif.tif_setupencode(tif)) return -1; tif.tif_flags|=TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_rawcc=0; tif.tif_rawcp=0; if(td.td_stripbytecount[strip]>0) { // Force TIFFAppendToStrip() to consider placing data at end of file. tif.tif_curoff=0; } if(!tif.tif_preencode(tif, sample)) return -1; tif.tif_flags|=TIF_FLAGS.TIFF_POSTENCODE; } // Ensure the write is either sequential or at the // beginning of a strip (or that we can randomly // access the data -- i.e. no encoding). if(row!=tif.tif_row) { if(row<tif.tif_row) { // Moving backwards within the same strip: // backup to the start and then decode // forward (below). tif.tif_row=(strip%td.td_stripsperimage)*td.td_rowsperstrip; tif.tif_rawcp=0; } // Seek forward to the desired row. if(!tif.tif_seek(tif, row-tif.tif_row)) return -1; tif.tif_row=row; } // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, buf, 0, (int)tif.tif_scanlinesize); bool status=tif.tif_encoderow(tif, buf, (int)tif.tif_scanlinesize, sample); // we are now poised at the beginning of the next row tif.tif_row=row+1; return status?1:0; }
// Encode the supplied data and write it to the // specified tile. There must be space for the // data. The function clamps individual writes // to a tile to the tile size, but does not (and // can not) check that multiple writes to the same // tile do not write more than tile size data. // // NB: Image length must be setup before writing; this // interface does not support automatically growing // the image on each write (as TIFFWriteScanline does). public static int TIFFWriteEncodedTile(TIFF tif, uint tile, byte[] data, int cc) { string module="TIFFWriteEncodedTile"; ushort sample; if(!((tif.tif_flags&TIF_FLAGS.TIFF_BEENWRITING)!=0||TIFFWriteCheck(tif, true, module))) return -1; TIFFDirectory td=tif.tif_dir; if(tile>=td.td_nstrips) { TIFFErrorExt(tif.tif_clientdata, module, "{0}: Tile {1} out of range, max {2}", tif.tif_name, tile, td.td_nstrips); return -1; } // Handle delayed allocation of data buffer. This // permits it to be sized more intelligently (using // directory information). if(!BUFFERCHECK(tif)) return -1; tif.tif_curtile=tile; tif.tif_rawcc=0; tif.tif_rawcp=0;; if(td.td_stripbytecount[tile]>0) { // if we are writing over existing tiles, zero length. td.td_stripbytecount[tile]=0; // this forces TIFFAppendToStrip() to do a seek. tif.tif_curoff=0; } // Compute tiles per row & per column to compute // current row and column tif.tif_row=(tile%TIFFhowmany(td.td_imagelength, td.td_tilelength))*td.td_tilelength; tif.tif_col=(tile%TIFFhowmany(td.td_imagewidth, td.td_tilewidth))*td.td_tilewidth; if((tif.tif_flags&TIF_FLAGS.TIFF_CODERSETUP)==0) { if(!tif.tif_setupencode(tif)) return -1; tif.tif_flags|=TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_flags&=~TIF_FLAGS.TIFF_POSTENCODE; sample=(ushort)(tile/td.td_stripsperimage); if(!tif.tif_preencode(tif, sample)) return -1; // Clamp write amount to the tile size. This is mostly // done so that callers can pass in some large number // (e.g. -1) and have the tile size used instead. if(cc<1||cc>tif.tif_tilesize) cc=tif.tif_tilesize; // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, data, 0, cc); if(!tif.tif_encodetile(tif, data, cc, sample)) return 0; if(!tif.tif_postencode(tif)) return -1; if(!isFillOrder(tif, td.td_fillorder)&&(tif.tif_flags&TIF_FLAGS.TIFF_NOBITREV)==0) TIFFReverseBits(tif.tif_rawdata, tif.tif_rawcc); if(tif.tif_rawcc>0&&!TIFFAppendToStrip(tif, tile, tif.tif_rawdata, tif.tif_rawcc)) return -1; tif.tif_rawcc=0; tif.tif_rawcp=0; return cc; }
// Encode the supplied data and write it to the // specified strip. // // NB: Image length must be setup before writing. public static int TIFFWriteEncodedStrip(TIFF tif, uint strip, byte[] data, int cc) { string module="TIFFWriteEncodedStrip"; TIFFDirectory td=tif.tif_dir; ushort sample; if(!((tif.tif_flags&TIF_FLAGS.TIFF_BEENWRITING)!=0||TIFFWriteCheck(tif, false, module))) return -1; // Check strip array to make sure there's space. // We don't support dynamically growing files that // have data organized in separate bitplanes because // it's too painful. In that case we require that // the imagelength be set properly before the first // write (so that the strips array will be fully // allocated above). /// if(strip>=td.td_nstrips) { if(td.td_planarconfig==PLANARCONFIG.SEPARATE) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "Can not grow image by strips when using separate planes"); return -1; } if(!TIFFGrowStrips(tif, 1, module)) return -1; td.td_stripsperimage=TIFFhowmany(td.td_imagelength, td.td_rowsperstrip); } // Handle delayed allocation of data buffer. This // permits it to be sized according to the directory // info. if(!BUFFERCHECK(tif)) return -1; tif.tif_curstrip=strip; tif.tif_row=(strip%td.td_stripsperimage)*td.td_rowsperstrip; if((tif.tif_flags&TIF_FLAGS.TIFF_CODERSETUP)==0) { if(!tif.tif_setupencode(tif)) return -1; tif.tif_flags|=TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_rawcc=0; tif.tif_rawcp=0; if(td.td_stripbytecount[strip]>0) { // Force TIFFAppendToStrip() to consider placing data at end of file. tif.tif_curoff=0; } tif.tif_flags&=~TIF_FLAGS.TIFF_POSTENCODE; sample=(ushort)(strip/td.td_stripsperimage); if(!tif.tif_preencode(tif, sample)) return -1; // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, data, 0, cc); if(!tif.tif_encodestrip(tif, data, cc, sample)) return 0; if(!tif.tif_postencode(tif)) return -1; if(!isFillOrder(tif, td.td_fillorder)&&(tif.tif_flags&TIF_FLAGS.TIFF_NOBITREV)==0) TIFFReverseBits(tif.tif_rawdata, tif.tif_rawcc); if(tif.tif_rawcc>0&&!TIFFAppendToStrip(tif, strip, tif.tif_rawdata, tif.tif_rawcc)) return -1; tif.tif_rawcc=0; tif.tif_rawcp=0; return cc; }
public static int TIFFWriteScanline(TIFF tif, byte[] buf, uint row, ushort sample) { string module = "TIFFWriteScanline"; if (!((tif.tif_flags & TIF_FLAGS.TIFF_BEENWRITING) != 0 || TIFFWriteCheck(tif, false, module))) { return(-1); } // Handle delayed allocation of data buffer. This // permits it to be sized more intelligently (using // directory information). if (!BUFFERCHECK(tif)) { return(-1); } TIFFDirectory td = tif.tif_dir; bool imagegrew = false; // Extend image length if needed // (but only for PlanarConfig=1). if (row >= td.td_imagelength) { // extend image if (td.td_planarconfig == PLANARCONFIG.SEPARATE) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "Can not change \"ImageLength\" when using separate planes"); return(-1); } td.td_imagelength = row + 1; imagegrew = true; } // Calculate strip and check for crossings. uint strip; if (td.td_planarconfig == PLANARCONFIG.SEPARATE) { if (sample >= td.td_samplesperpixel) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "{0}: Sample out of range, max {1}", sample, td.td_samplesperpixel); return(-1); } strip = sample * td.td_stripsperimage + row / td.td_rowsperstrip; } else { strip = row / td.td_rowsperstrip; } // Check strip array to make sure there's space. We don't support // dynamically growing files that have data organized in separate // bitplanes because it's too painful. In that case we require that // the imagelength be set properly before the first write (so that the // strips array will be fully allocated above). if (strip >= td.td_nstrips && !TIFFGrowStrips(tif, 1, module)) { return(-1); } if (strip != tif.tif_curstrip) { // Changing strips -- flush any data present. if (!TIFFFlushData(tif)) { return(-1); } tif.tif_curstrip = strip; // Watch out for a growing image. The value of strips/image // will initially be 1 (since it can't be deduced until the // imagelength is known). if (strip >= td.td_stripsperimage && imagegrew) { td.td_stripsperimage = TIFFhowmany(td.td_imagelength, td.td_rowsperstrip); } tif.tif_row = (strip % td.td_stripsperimage) * td.td_rowsperstrip; if ((tif.tif_flags & TIF_FLAGS.TIFF_CODERSETUP) == 0) { if (!tif.tif_setupencode(tif)) { return(-1); } tif.tif_flags |= TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_rawcc = 0; tif.tif_rawcp = 0; if (td.td_stripbytecount[strip] > 0) { // Force TIFFAppendToStrip() to consider placing data at end of file. tif.tif_curoff = 0; } if (!tif.tif_preencode(tif, sample)) { return(-1); } tif.tif_flags |= TIF_FLAGS.TIFF_POSTENCODE; } // Ensure the write is either sequential or at the // beginning of a strip (or that we can randomly // access the data -- i.e. no encoding). if (row != tif.tif_row) { if (row < tif.tif_row) { // Moving backwards within the same strip: // backup to the start and then decode // forward (below). tif.tif_row = (strip % td.td_stripsperimage) * td.td_rowsperstrip; tif.tif_rawcp = 0; } // Seek forward to the desired row. if (!tif.tif_seek(tif, row - tif.tif_row)) { return(-1); } tif.tif_row = row; } // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, buf, 0, (int)tif.tif_scanlinesize); bool status = tif.tif_encoderow(tif, buf, (int)tif.tif_scanlinesize, sample); // we are now poised at the beginning of the next row tif.tif_row = row + 1; return(status?1:0); }
// Encode the supplied data and write it to the // specified tile. There must be space for the // data. The function clamps individual writes // to a tile to the tile size, but does not (and // can not) check that multiple writes to the same // tile do not write more than tile size data. // // NB: Image length must be setup before writing; this // interface does not support automatically growing // the image on each write (as TIFFWriteScanline does). public static int TIFFWriteEncodedTile(TIFF tif, uint tile, byte[] data, int cc) { string module = "TIFFWriteEncodedTile"; ushort sample; if (!((tif.tif_flags & TIF_FLAGS.TIFF_BEENWRITING) != 0 || TIFFWriteCheck(tif, true, module))) { return(-1); } TIFFDirectory td = tif.tif_dir; if (tile >= td.td_nstrips) { TIFFErrorExt(tif.tif_clientdata, module, "{0}: Tile {1} out of range, max {2}", tif.tif_name, tile, td.td_nstrips); return(-1); } // Handle delayed allocation of data buffer. This // permits it to be sized more intelligently (using // directory information). if (!BUFFERCHECK(tif)) { return(-1); } tif.tif_curtile = tile; tif.tif_rawcc = 0; tif.tif_rawcp = 0;; if (td.td_stripbytecount[tile] > 0) { // if we are writing over existing tiles, zero length. td.td_stripbytecount[tile] = 0; // this forces TIFFAppendToStrip() to do a seek. tif.tif_curoff = 0; } // Compute tiles per row & per column to compute // current row and column tif.tif_row = (tile % TIFFhowmany(td.td_imagelength, td.td_tilelength)) * td.td_tilelength; tif.tif_col = (tile % TIFFhowmany(td.td_imagewidth, td.td_tilewidth)) * td.td_tilewidth; if ((tif.tif_flags & TIF_FLAGS.TIFF_CODERSETUP) == 0) { if (!tif.tif_setupencode(tif)) { return(-1); } tif.tif_flags |= TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_flags &= ~TIF_FLAGS.TIFF_POSTENCODE; sample = (ushort)(tile / td.td_stripsperimage); if (!tif.tif_preencode(tif, sample)) { return(-1); } // Clamp write amount to the tile size. This is mostly // done so that callers can pass in some large number // (e.g. -1) and have the tile size used instead. if (cc < 1 || cc > tif.tif_tilesize) { cc = tif.tif_tilesize; } // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, data, 0, cc); if (!tif.tif_encodetile(tif, data, cc, sample)) { return(0); } if (!tif.tif_postencode(tif)) { return(-1); } if (!isFillOrder(tif, td.td_fillorder) && (tif.tif_flags & TIF_FLAGS.TIFF_NOBITREV) == 0) { TIFFReverseBits(tif.tif_rawdata, tif.tif_rawcc); } if (tif.tif_rawcc > 0 && !TIFFAppendToStrip(tif, tile, tif.tif_rawdata, tif.tif_rawcc)) { return(-1); } tif.tif_rawcc = 0; tif.tif_rawcp = 0; return(cc); }
// Encode the supplied data and write it to the // specified strip. // // NB: Image length must be setup before writing. public static int TIFFWriteEncodedStrip(TIFF tif, uint strip, byte[] data, int cc) { string module = "TIFFWriteEncodedStrip"; TIFFDirectory td = tif.tif_dir; ushort sample; if (!((tif.tif_flags & TIF_FLAGS.TIFF_BEENWRITING) != 0 || TIFFWriteCheck(tif, false, module))) { return(-1); } // Check strip array to make sure there's space. // We don't support dynamically growing files that // have data organized in separate bitplanes because // it's too painful. In that case we require that // the imagelength be set properly before the first // write (so that the strips array will be fully // allocated above). /// if (strip >= td.td_nstrips) { if (td.td_planarconfig == PLANARCONFIG.SEPARATE) { TIFFErrorExt(tif.tif_clientdata, tif.tif_name, "Can not grow image by strips when using separate planes"); return(-1); } if (!TIFFGrowStrips(tif, 1, module)) { return(-1); } td.td_stripsperimage = TIFFhowmany(td.td_imagelength, td.td_rowsperstrip); } // Handle delayed allocation of data buffer. This // permits it to be sized according to the directory // info. if (!BUFFERCHECK(tif)) { return(-1); } tif.tif_curstrip = strip; tif.tif_row = (strip % td.td_stripsperimage) * td.td_rowsperstrip; if ((tif.tif_flags & TIF_FLAGS.TIFF_CODERSETUP) == 0) { if (!tif.tif_setupencode(tif)) { return(-1); } tif.tif_flags |= TIF_FLAGS.TIFF_CODERSETUP; } tif.tif_rawcc = 0; tif.tif_rawcp = 0; if (td.td_stripbytecount[strip] > 0) { // Force TIFFAppendToStrip() to consider placing data at end of file. tif.tif_curoff = 0; } tif.tif_flags &= ~TIF_FLAGS.TIFF_POSTENCODE; sample = (ushort)(strip / td.td_stripsperimage); if (!tif.tif_preencode(tif, sample)) { return(-1); } // swab if needed - note that source buffer will be altered tif.tif_postdecode(tif, data, 0, cc); if (!tif.tif_encodestrip(tif, data, cc, sample)) { return(0); } if (!tif.tif_postencode(tif)) { return(-1); } if (!isFillOrder(tif, td.td_fillorder) && (tif.tif_flags & TIF_FLAGS.TIFF_NOBITREV) == 0) { TIFFReverseBits(tif.tif_rawdata, tif.tif_rawcc); } if (tif.tif_rawcc > 0 && !TIFFAppendToStrip(tif, strip, tif.tif_rawdata, tif.tif_rawcc)) { return(-1); } tif.tif_rawcc = 0; tif.tif_rawcp = 0; return(cc); }