/// <summary> /// Scan part of the FlipScan algorithm<br> /// When a triangle pair isn't flippable we will scan for the next /// point that is inside the flip triangle scan area. When found /// we generate a new flipEdgeEvent /// </summary> /// <param name="tcx"></param> /// <param name="ep">last point on the edge we are traversing</param> /// <param name="eq">first point on the edge we are traversing</param> /// <param name="flipTriangle">the current triangle sharing the point eq with edge</param> /// <param name="t"></param> /// <param name="p"></param> private static void FlipScanEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle flipTriangle, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot; TriangulationPoint op, newP; bool inScanArea; ot = t.NeighborAcrossFrom(p); op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new Exception("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { //Console.WriteLine("[FLIP:SCAN] - scan next point"); // TODO: remove tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } inScanArea = TriangulationUtil.InScanArea(eq, flipTriangle.PointCCWFrom(eq), flipTriangle.PointCWFrom(eq), op); if (inScanArea) { // flip with new edge op->eq FlipEdgeEvent(tcx, eq, op, ot, op); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flipTriangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { if (NextFlipPoint(ep, eq, ot, op, out newP)) { FlipScanEdgeEvent(tcx, ep, eq, flipTriangle, ot, newP); } //newP = NextFlipPoint(ep, eq, ot, op); } }
/// <summary> /// When we need to traverse from one triangle to the next we need /// the point in current triangle that is the opposite point to the next /// triangle. /// </summary> private static bool NextFlipPoint(TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle ot, TriangulationPoint op, out TriangulationPoint newP) { newP = null; Orientation o2d = TriangulationUtil.Orient2d(eq, op, ep); switch (o2d) { case Orientation.CW: newP = ot.PointCCWFrom(op); return(true); case Orientation.CCW: newP = ot.PointCWFrom(op); return(true); case Orientation.Collinear: // TODO: implement support for point on constraint edge //throw new PointOnEdgeException("Point on constrained edge not supported yet", eq, op, ep); return(false); default: throw new NotImplementedException("Orientation not handled"); } }
/// <summary> /// After a flip we have two triangles and know that only one will still be /// intersecting the edge. So decide which to contiune with and legalize the other /// </summary> /// <param name="tcx"></param> /// <param name="o">should be the result of an TriangulationUtil.orient2d( eq, op, ep )</param> /// <param name="t">triangle 1</param> /// <param name="ot">triangle 2</param> /// <param name="p">a point shared by both triangles</param> /// <param name="op">another point shared by both triangles</param> /// <returns>returns the triangle still intersecting the edge</returns> private static DelaunayTriangle NextFlipTriangle(DTSweepContext tcx, Orientation o, DelaunayTriangle t, DelaunayTriangle ot, TriangulationPoint p, TriangulationPoint op) { int edgeIndex; if (o == Orientation.CCW) { // ot is not crossing edge after flip edgeIndex = ot.EdgeIndex(p, op); ot.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, ot); ot.EdgeIsDelaunay.Clear(); return(t); } // t is not crossing edge after flip edgeIndex = t.EdgeIndex(p, op); t.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, t); t.EdgeIsDelaunay.Clear(); return(ot); }
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = triangle; } if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.PointCCWFrom(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p1)) { triangle.MarkConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p1; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p1, triangle, p1); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p1); } if (tcx.IsDebugEnabled) { //Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } p2 = triangle.PointCWFrom(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { if (triangle.Contains(eq) && triangle.Contains(p2)) { triangle.MarkConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p2; triangle = triangle.NeighborAcrossFrom(point); EdgeEvent(tcx, ep, p2, triangle, p2); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet", ep, eq, p2); } if (tcx.IsDebugEnabled) { //Console.WriteLine("EdgeEvent - Point on constrained edge"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCWFrom(point); } else { triangle = triangle.NeighborCWFrom(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
private static void FlipEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot = t.NeighborAcrossFrom(p); TriangulationPoint op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new InvalidOperationException("[BUG:FIXME] FLIP failed due to missing triangle"); } if (tcx.IsDebugEnabled) { tcx.DTDebugContext.PrimaryTriangle = t; tcx.DTDebugContext.SecondaryTriangle = ot; } // TODO: remove bool inScanArea = TriangulationUtil.InScanArea(p, t.PointCCWFrom(p), t.PointCWFrom(p), op); if (inScanArea) { // Lets rotate shared edge one vertex CW RotateTrianglePair(t, p, ot, op); tcx.MapTriangleToNodes(t); tcx.MapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.EdgeEvent.ConstrainedEdge.Q && ep == tcx.EdgeEvent.ConstrainedEdge.P) { if (tcx.IsDebugEnabled) { //Console.WriteLine("[FLIP] - constrained edge done"); // TODO: remove } t.MarkConstrainedEdge(ep, eq); ot.MarkConstrainedEdge(ep, eq); Legalize(tcx, t); Legalize(tcx, ot); } else { if (tcx.IsDebugEnabled) { //Console.WriteLine("[FLIP] - subedge done"); // TODO: remove } // XXX: I think one of the triangles should be legalized here? } } else { if (tcx.IsDebugEnabled) { //Console.WriteLine("[FLIP] - flipping and continuing with triangle still crossing edge"); // TODO: remove } Orientation o = TriangulationUtil.Orient2d(eq, op, ep); t = NextFlipTriangle(tcx, o, t, ot, p, op); FlipEdgeEvent(tcx, ep, eq, t, p); } } else { TriangulationPoint newP = null; if (NextFlipPoint(ep, eq, ot, op, out newP)) { FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP); EdgeEvent(tcx, ep, eq, t, p); } } }
private static bool IsEdgeSideOfTriangle(DelaunayTriangle triangle, TriangulationPoint ep, TriangulationPoint eq) { int index = triangle.EdgeIndex(ep, eq); if (index == -1) { return(false); } triangle.MarkConstrainedEdge(index); triangle = triangle.Neighbors[index]; if (triangle != null) { triangle.MarkConstrainedEdge(ep, eq); } return(true); }
/// <summary> /// Rotates a triangle pair one vertex CW /// n2 n2 /// P +-----+ P +-----+ /// | t /| |\ t | /// | / | | \ | /// n1| / |n3 n1| \ |n3 /// | / | after CW | \ | /// |/ oT | | oT \| /// +-----+ oP +-----+ /// n4 n4 /// </summary> private static void RotateTrianglePair(DelaunayTriangle t, TriangulationPoint p, DelaunayTriangle ot, TriangulationPoint op) { DelaunayTriangle n1, n2, n3, n4; n1 = t.NeighborCCWFrom(p); n2 = t.NeighborCWFrom(p); n3 = ot.NeighborCCWFrom(op); n4 = ot.NeighborCWFrom(op); bool ce1, ce2, ce3, ce4; ce1 = t.GetConstrainedEdgeCCW(p); ce2 = t.GetConstrainedEdgeCW(p); ce3 = ot.GetConstrainedEdgeCCW(op); ce4 = ot.GetConstrainedEdgeCW(op); bool de1, de2, de3, de4; de1 = t.GetDelaunayEdgeCCW(p); de2 = t.GetDelaunayEdgeCW(p); de3 = ot.GetDelaunayEdgeCCW(op); de4 = ot.GetDelaunayEdgeCW(op); t.Legalize(p, op); ot.Legalize(op, p); // Remap dEdge ot.SetDelaunayEdgeCCW(p, de1); t.SetDelaunayEdgeCW(p, de2); t.SetDelaunayEdgeCCW(op, de3); ot.SetDelaunayEdgeCW(op, de4); // Remap cEdge ot.SetConstrainedEdgeCCW(p, ce1); t.SetConstrainedEdgeCW(p, ce2); t.SetConstrainedEdgeCCW(op, ce3); ot.SetConstrainedEdgeCW(op, ce4); // Remap neighbors // XXX: might optimize the markNeighbor by keeping track of // what side should be assigned to what neighbor after the // rotation. Now mark neighbor does lots of testing to find // the right side. t.Neighbors.Clear(); ot.Neighbors.Clear(); if (n1 != null) { ot.MarkNeighbor(n1); } if (n2 != null) { t.MarkNeighbor(n2); } if (n3 != null) { t.MarkNeighbor(n3); } if (n4 != null) { ot.MarkNeighbor(n4); } t.MarkNeighbor(ot); }
/// <summary> /// Returns true if triangle was legalized /// </summary> private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t) { // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for (int i = 0; i < 3; i++) { // TODO: fix so that cEdge is always valid when creating new triangles then we can check it here // instead of below with ot if (t.EdgeIsDelaunay[i]) { continue; } DelaunayTriangle ot = t.Neighbors[i]; if (ot == null) { continue; } TriangulationPoint p = t.Points[i]; TriangulationPoint op = ot.OppositePoint(t, p); int oi = ot.IndexOf(op); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if (ot.EdgeIsConstrained[oi] || ot.EdgeIsDelaunay[oi]) { t.SetConstrainedEdgeAcross(p, ot.EdgeIsConstrained[oi]); // XXX: have no good way of setting this property when creating new triangles so lets set it here continue; } if (!TriangulationUtil.SmartIncircle(p, t.PointCCWFrom(p), t.PointCWFrom(p), op)) { continue; } // Lets mark this shared edge as Delaunay t.EdgeIsDelaunay[i] = true; ot.EdgeIsDelaunay[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair(t, p, ot, op); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle if (!Legalize(tcx, t)) { tcx.MapTriangleToNodes(t); } if (!Legalize(tcx, ot)) { tcx.MapTriangleToNodes(ot); } // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.EdgeIsDelaunay[i] = false; ot.EdgeIsDelaunay[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return(true); } return(false); }
/// <summary> /// Give two points in any order. Will always be ordered so /// that q.y > p.y and q.x > p.x if same y value /// </summary> public DTSweepConstraint(TriangulationPoint p1, TriangulationPoint p2) : base(p1, p2) { Q.AddEdge(this); }
/// <summary> /// We use a balancing tree to locate a node smaller or equal to given key value (in theory) /// </summary> public AdvancingFrontNode LocateNode(TriangulationPoint point) { return(LocateNode(point.X)); }