示例#1
0
 public ContactConstraint()
 {
     for (int i = 0; i < Settings.MaxManifoldPoints; i++)
     {
         Points[i] = new ContactConstraintPoint();
     }
 }
示例#2
0
 public ContactConstraint()
 {
     for (int i = 0; i < Settings.MaxManifoldPoints; i++)
     {
         Points[i] = new ContactConstraintPoint();
     }
 }
示例#3
0
        public void StoreImpulses()
        {
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = Constraints[i];
                if (c.BodyA.Penetrable || c.BodyB.Penetrable)
                {
                    continue;
                }

                Manifold m = c.Manifold;

                for (int j = 0; j < c.PointCount; ++j)
                {
                    ManifoldPoint          pj = m.Points[j];
                    ContactConstraintPoint cp = c.Points[j];

                    pj.NormalImpulse  = cp.NormalImpulse;
                    pj.TangentImpulse = cp.TangentImpulse;

                    m.Points[j] = pj;
                }

                c.Manifold            = m;
                _contacts[i].Manifold = m;
            }
        }
示例#4
0
 public ContactConstraint()
 {
     for (int i = 0; i < Settings.MaxPolygonVertices; i++)
     {
         Points[i] = new ContactConstraintPoint();
     }
 }
示例#5
0
        public void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = Constraints[i];

                Body    bodyA    = c.BodyA;
                Body    bodyB    = c.BodyB;
                float   invMassA = bodyA.InvMass;
                float   invIA    = bodyA.InvI;
                float   invMassB = bodyB.InvMass;
                float   invIB    = bodyB.InvI;
                Vector2 normal   = c.Normal;

#if MATH_OVERLOADS
                Vector2 tangent = MathUtils.Cross(normal, 1.0f);
#else
                Vector2 tangent = new Vector2(normal.Y, -normal.X);
#endif

                for (int j = 0; j < c.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.Points[j];
#if MATH_OVERLOADS
                    Vector2 P = ccp.NormalImpulse * normal + ccp.TangentImpulse * tangent;
                    bodyA.AngularVelocityInternal -= invIA * MathUtils.Cross(ccp.rA, P);
                    bodyA.LinearVelocityInternal  -= invMassA * P;
                    bodyB.AngularVelocityInternal += invIB * MathUtils.Cross(ccp.rB, P);
                    bodyB.LinearVelocityInternal  += invMassB * P;
#else
                    Vector2 P = new Vector2(ccp.NormalImpulse * normal.X + ccp.TangentImpulse * tangent.X,
                                            ccp.NormalImpulse * normal.Y + ccp.TangentImpulse * tangent.Y);
                    bodyA.AngularVelocityInternal  -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);
                    bodyA.LinearVelocityInternal.X -= invMassA * P.X;
                    bodyA.LinearVelocityInternal.Y -= invMassA * P.Y;
                    bodyB.AngularVelocityInternal  += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
                    bodyB.LinearVelocityInternal.X += invMassB * P.X;
                    bodyB.LinearVelocityInternal.Y += invMassB * P.Y;
#endif
                }
            }
        }
示例#6
0
        public void StoreImpulses()
        {
            for (int i = 0; i < this._constraintCount; ++i)
            {
                ContactConstraint c = this.Constraints[i];
                Manifold          m = c.Manifold;

                for (int j = 0; j < c.PointCount; ++j)
                {
                    ManifoldPoint          pj = m.Points[j];
                    ContactConstraintPoint cp = c.Points[j];

                    pj.NormalImpulse  = cp.NormalImpulse;
                    pj.TangentImpulse = cp.TangentImpulse;

                    m.Points[j] = pj;
                }

                c.Manifold = m;
                this._contacts[i].Manifold = m;
            }
        }
示例#7
0
        public void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < this._constraintCount; ++i)
            {
                ContactConstraint c = this.Constraints[i];

                float tangentx = c.Normal.Y;
                float tangenty = -c.Normal.X;

                for (int j = 0; j < c.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.Points[j];
                    float px = ccp.NormalImpulse * c.Normal.X + ccp.TangentImpulse * tangentx;
                    float py = ccp.NormalImpulse * c.Normal.Y + ccp.TangentImpulse * tangenty;
                    c.BodyA.AngularVelocityInternal  -= c.BodyA.InvI * (ccp.rA.X * py - ccp.rA.Y * px);
                    c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * px;
                    c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * py;
                    c.BodyB.AngularVelocityInternal  += c.BodyB.InvI * (ccp.rB.X * py - ccp.rB.Y * px);
                    c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * px;
                    c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * py;
                }
            }
        }
示例#8
0
        public void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = Constraints[i];

                float tangentx = c.Normal.y;
                float tangenty = -c.Normal.x;

                for (int j = 0; j < c.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.Points[j];
                    float px = ccp.NormalImpulse * c.Normal.x + ccp.TangentImpulse * tangentx;
                    float py = ccp.NormalImpulse * c.Normal.y + ccp.TangentImpulse * tangenty;
                    c.BodyA.AngularVelocityInternal  -= c.BodyA.InvI * (ccp.rA.x * py - ccp.rA.y * px);
                    c.BodyA.LinearVelocityInternal.x -= c.BodyA.InvMass * px;
                    c.BodyA.LinearVelocityInternal.y -= c.BodyA.InvMass * py;
                    c.BodyB.AngularVelocityInternal  += c.BodyB.InvI * (ccp.rB.x * py - ccp.rB.y * px);
                    c.BodyB.LinearVelocityInternal.x += c.BodyB.InvMass * px;
                    c.BodyB.LinearVelocityInternal.y += c.BodyB.InvMass * py;
                }
            }
        }
示例#9
0
        public void Reset(Contact[] contacts, int contactCount, float impulseRatio, bool warmstarting)
        {
            this._contacts = contacts;

            this._constraintCount = contactCount;

            // grow the array
            if (this.Constraints == null || this.Constraints.Length < this._constraintCount)
            {
                this.Constraints = new ContactConstraint[this._constraintCount * 2];

                for (int i = 0; i < this.Constraints.Length; i++)
                {
                    this.Constraints[i] = new ContactConstraint();
                }
            }

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < this._constraintCount; ++i)
            {
                Contact contact = contacts[i];

                Fixture  fixtureA = contact.FixtureA;
                Fixture  fixtureB = contact.FixtureB;
                Shape    shapeA   = fixtureA.Shape;
                Shape    shapeB   = fixtureB.Shape;
                float    radiusA  = shapeA.Radius;
                float    radiusB  = shapeB.Radius;
                Body     bodyA    = fixtureA.Body;
                Body     bodyB    = fixtureB.Body;
                Manifold manifold = contact.Manifold;

                Debug.Assert(manifold.PointCount > 0);

                ContactConstraint cc = this.Constraints[i];
                cc.Friction    = Settings.MixFriction(fixtureA.Friction, fixtureB.Friction);
                cc.Restitution = Settings.MixRestitution(fixtureA.Restitution, fixtureB.Restitution);
                cc.BodyA       = bodyA;
                cc.BodyB       = bodyB;
                cc.Manifold    = manifold;
                cc.Normal      = Vector2.Zero;
                cc.PointCount  = manifold.PointCount;

                cc.LocalNormal = manifold.LocalNormal;
                cc.LocalPoint  = manifold.LocalPoint;
                cc.RadiusA     = radiusA;
                cc.RadiusB     = radiusB;
                cc.Type        = manifold.Type;

                for (int j = 0; j < cc.PointCount; ++j)
                {
                    ManifoldPoint          cp  = manifold.Points[j];
                    ContactConstraintPoint ccp = cc.Points[j];

                    if (warmstarting)
                    {
                        ccp.NormalImpulse  = impulseRatio * cp.NormalImpulse;
                        ccp.TangentImpulse = impulseRatio * cp.TangentImpulse;
                    }
                    else
                    {
                        ccp.NormalImpulse  = 0.0f;
                        ccp.TangentImpulse = 0.0f;
                    }

                    ccp.LocalPoint   = cp.LocalPoint;
                    ccp.rA           = Vector2.Zero;
                    ccp.rB           = Vector2.Zero;
                    ccp.NormalMass   = 0.0f;
                    ccp.TangentMass  = 0.0f;
                    ccp.VelocityBias = 0.0f;
                }

                cc.K.SetZero();
                cc.NormalMass.SetZero();
            }
        }
示例#10
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < this._constraintCount; ++i)
            {
                ContactConstraint c  = this.Constraints[i];
                float             wA = c.BodyA.AngularVelocityInternal;
                float             wB = c.BodyB.AngularVelocityInternal;

                float tangentx = c.Normal.Y;
                float tangenty = -c.Normal.X;

                float friction = c.Friction;

                Debug.Assert(c.PointCount == 1 || c.PointCount == 2);

                // Solve tangent constraints
                for (int j = 0; j < c.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.Points[j];
                    float lambda = ccp.TangentMass *
                                   -((c.BodyB.LinearVelocityInternal.X + (-wB * ccp.rB.Y) -
                                      c.BodyA.LinearVelocityInternal.X - (-wA * ccp.rA.Y)) * tangentx +
                                     (c.BodyB.LinearVelocityInternal.Y + (wB * ccp.rB.X) -
                                      c.BodyA.LinearVelocityInternal.Y - (wA * ccp.rA.X)) * tangenty);

                    // MathUtils.Clamp the accumulated force
                    float maxFriction = friction * ccp.NormalImpulse;
                    float newImpulse  = Math.Max(-maxFriction, Math.Min(ccp.TangentImpulse + lambda, maxFriction));
                    lambda = newImpulse - ccp.TangentImpulse;

                    // Apply contact impulse
                    float px = lambda * tangentx;
                    float py = lambda * tangenty;

                    c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * px;
                    c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * py;
                    wA -= c.BodyA.InvI * (ccp.rA.X * py - ccp.rA.Y * px);

                    c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * px;
                    c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * py;
                    wB += c.BodyB.InvI * (ccp.rB.X * py - ccp.rB.Y * px);

                    ccp.TangentImpulse = newImpulse;
                }

                // Solve normal constraints
                if (c.PointCount == 1)
                {
                    ContactConstraintPoint ccp = c.Points[0];

                    // Relative velocity at contact
                    // Compute normal impulse
                    float lambda = -ccp.NormalMass *
                                   ((c.BodyB.LinearVelocityInternal.X + (-wB * ccp.rB.Y) -
                                     c.BodyA.LinearVelocityInternal.X - (-wA * ccp.rA.Y)) * c.Normal.X +
                                    (c.BodyB.LinearVelocityInternal.Y + (wB * ccp.rB.X) -
                                     c.BodyA.LinearVelocityInternal.Y -
                                     (wA * ccp.rA.X)) * c.Normal.Y - ccp.VelocityBias);

                    // Clamp the accumulated impulse
                    float newImpulse = Math.Max(ccp.NormalImpulse + lambda, 0.0f);
                    lambda = newImpulse - ccp.NormalImpulse;

                    // Apply contact impulse
                    float px = lambda * c.Normal.X;
                    float py = lambda * c.Normal.Y;

                    c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * px;
                    c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * py;
                    wA -= c.BodyA.InvI * (ccp.rA.X * py - ccp.rA.Y * px);

                    c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * px;
                    c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * py;
                    wB += c.BodyB.InvI * (ccp.rB.X * py - ccp.rB.Y * px);

                    ccp.NormalImpulse = newImpulse;
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn_0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = x' - a
                    //
                    // Plug into above equation:
                    //
                    // vn = A * x + b
                    //    = A * (x' - a) + b
                    //    = A * x' + b - A * a
                    //    = A * x' + b'
                    // b' = b - A * a;

                    ContactConstraintPoint cp1 = c.Points[0];
                    ContactConstraintPoint cp2 = c.Points[1];

                    float ax = cp1.NormalImpulse;
                    float ay = cp2.NormalImpulse;
                    Debug.Assert(ax >= 0.0f && ay >= 0.0f);

                    // Relative velocity at contact
                    // Compute normal velocity
                    float vn1 = (c.BodyB.LinearVelocityInternal.X + (-wB * cp1.rB.Y) - c.BodyA.LinearVelocityInternal.X -
                                 (-wA * cp1.rA.Y)) * c.Normal.X +
                                (c.BodyB.LinearVelocityInternal.Y + (wB * cp1.rB.X) - c.BodyA.LinearVelocityInternal.Y -
                                 (wA * cp1.rA.X)) * c.Normal.Y;
                    float vn2 = (c.BodyB.LinearVelocityInternal.X + (-wB * cp2.rB.Y) - c.BodyA.LinearVelocityInternal.X -
                                 (-wA * cp2.rA.Y)) * c.Normal.X +
                                (c.BodyB.LinearVelocityInternal.Y + (wB * cp2.rB.X) - c.BodyA.LinearVelocityInternal.Y -
                                 (wA * cp2.rA.X)) * c.Normal.Y;

                    float bx = vn1 - cp1.VelocityBias - (c.K.Col1.X * ax + c.K.Col2.X * ay);
                    float by = vn2 - cp2.VelocityBias - (c.K.Col1.Y * ax + c.K.Col2.Y * ay);

                    float xx = -(c.NormalMass.Col1.X * bx + c.NormalMass.Col2.X * by);
                    float xy = -(c.NormalMass.Col1.Y * bx + c.NormalMass.Col2.Y * by);

                    while (true)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x' + b'
                        //
                        // Solve for x':
                        //
                        // x' = - inv(A) * b'
                        //
                        if (xx >= 0.0f && xy >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            float dx = xx - ax;
                            float dy = xy - ay;

                            // Apply incremental impulse
                            float p1x = dx * c.Normal.X;
                            float p1y = dx * c.Normal.Y;

                            float p2x = dy * c.Normal.X;
                            float p2y = dy * c.Normal.Y;

                            float p12x = p1x + p2x;
                            float p12y = p1y + p2y;

                            c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * p12x;
                            c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * p12y;
                            wA -= c.BodyA.InvI * ((cp1.rA.X * p1y - cp1.rA.Y * p1x) + (cp2.rA.X * p2y - cp2.rA.Y * p2x));

                            c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * p12x;
                            c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * p12y;
                            wB += c.BodyB.InvI * ((cp1.rB.X * p1y - cp1.rB.Y * p1x) + (cp2.rB.X * p2y - cp2.rB.Y * p2x));

                            // Accumulate
                            cp1.NormalImpulse = xx;
                            cp2.NormalImpulse = xy;

                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1' + a12 * 0 + b1'
                        // vn2 = a21 * x1' + a22 * 0 + b2'
                        //
                        xx  = -cp1.NormalMass * bx;
                        xy  = 0.0f;
                        vn1 = 0.0f;
                        vn2 = c.K.Col1.Y * xx + by;

                        if (xx >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            float dx = xx - ax;
                            float dy = xy - ay;

                            // Apply incremental impulse
                            float p1x = dx * c.Normal.X;
                            float p1y = dx * c.Normal.Y;

                            float p2x = dy * c.Normal.X;
                            float p2y = dy * c.Normal.Y;

                            float p12x = p1x + p2x;
                            float p12y = p1y + p2y;

                            c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * p12x;
                            c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * p12y;
                            wA -= c.BodyA.InvI * ((cp1.rA.X * p1y - cp1.rA.Y * p1x) + (cp2.rA.X * p2y - cp2.rA.Y * p2x));

                            c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * p12x;
                            c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * p12y;
                            wB += c.BodyB.InvI * ((cp1.rB.X * p1y - cp1.rB.Y * p1x) + (cp2.rB.X * p2y - cp2.rB.Y * p2x));

                            // Accumulate
                            cp1.NormalImpulse = xx;
                            cp2.NormalImpulse = xy;

                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2' + b1'
                        //   0 = a21 * 0 + a22 * x2' + b2'
                        //
                        xx  = 0.0f;
                        xy  = -cp2.NormalMass * by;
                        vn1 = c.K.Col2.X * xy + bx;
                        vn2 = 0.0f;

                        if (xy >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            float dx = xx - ax;
                            float dy = xy - ay;

                            // Apply incremental impulse
                            float p1x = dx * c.Normal.X;
                            float p1y = dx * c.Normal.Y;

                            float p2x = dy * c.Normal.X;
                            float p2y = dy * c.Normal.Y;

                            float p12x = p1x + p2x;
                            float p12y = p1y + p2y;

                            c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * p12x;
                            c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * p12y;
                            wA -= c.BodyA.InvI * ((cp1.rA.X * p1y - cp1.rA.Y * p1x) + (cp2.rA.X * p2y - cp2.rA.Y * p2x));

                            c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * p12x;
                            c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * p12y;
                            wB += c.BodyB.InvI * ((cp1.rB.X * p1y - cp1.rB.Y * p1x) + (cp2.rB.X * p2y - cp2.rB.Y * p2x));

                            // Accumulate
                            cp1.NormalImpulse = xx;
                            cp2.NormalImpulse = xy;

                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        xx  = 0.0f;
                        xy  = 0.0f;
                        vn1 = bx;
                        vn2 = by;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            float dx = xx - ax;
                            float dy = xy - ay;

                            // Apply incremental impulse
                            float p1x = dx * c.Normal.X;
                            float p1y = dx * c.Normal.Y;

                            float p2x = dy * c.Normal.X;
                            float p2y = dy * c.Normal.Y;

                            float p12x = p1x + p2x;
                            float p12y = p1y + p2y;

                            c.BodyA.LinearVelocityInternal.X -= c.BodyA.InvMass * p12x;
                            c.BodyA.LinearVelocityInternal.Y -= c.BodyA.InvMass * p12y;
                            wA -= c.BodyA.InvI * ((cp1.rA.X * p1y - cp1.rA.Y * p1x) + (cp2.rA.X * p2y - cp2.rA.Y * p2x));

                            c.BodyB.LinearVelocityInternal.X += c.BodyB.InvMass * p12x;
                            c.BodyB.LinearVelocityInternal.Y += c.BodyB.InvMass * p12y;
                            wB += c.BodyB.InvI * ((cp1.rB.X * p1y - cp1.rB.Y * p1x) + (cp2.rB.X * p2y - cp2.rB.Y * p2x));

                            // Accumulate
                            cp1.NormalImpulse = xx;
                            cp2.NormalImpulse = xy;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                }

                c.BodyA.AngularVelocityInternal = wA;
                c.BodyB.AngularVelocityInternal = wB;
            }
        }
示例#11
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < this._constraintCount; ++i)
            {
                ContactConstraint cc = this.Constraints[i];

                float    radiusA  = cc.RadiusA;
                float    radiusB  = cc.RadiusB;
                Body     bodyA    = cc.BodyA;
                Body     bodyB    = cc.BodyB;
                Manifold manifold = cc.Manifold;

                Vector2 vA = bodyA.LinearVelocity;
                Vector2 vB = bodyB.LinearVelocity;
                float   wA = bodyA.AngularVelocity;
                float   wB = bodyB.AngularVelocity;

                Debug.Assert(manifold.PointCount > 0);
                FixedArray2 <Vector2> points;

                Collision.Collision.GetWorldManifold(ref manifold, ref bodyA.Xf, radiusA, ref bodyB.Xf, radiusB,
                                                     out cc.Normal, out points);
                Vector2 tangent = new Vector2(cc.Normal.Y, -cc.Normal.X);

                for (int j = 0; j < cc.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = cc.Points[j];

                    ccp.rA = points[j] - bodyA.Sweep.C;
                    ccp.rB = points[j] - bodyB.Sweep.C;

                    float rnA = ccp.rA.X * cc.Normal.Y - ccp.rA.Y * cc.Normal.X;
                    float rnB = ccp.rB.X * cc.Normal.Y - ccp.rB.Y * cc.Normal.X;
                    rnA *= rnA;
                    rnB *= rnB;

                    float kNormal = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rnA + bodyB.InvI * rnB;

                    Debug.Assert(kNormal > Settings.Epsilon);
                    ccp.NormalMass = 1.0f / kNormal;

                    float rtA = ccp.rA.X * tangent.Y - ccp.rA.Y * tangent.X;
                    float rtB = ccp.rB.X * tangent.Y - ccp.rB.Y * tangent.X;

                    rtA *= rtA;
                    rtB *= rtB;
                    float kTangent = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rtA + bodyB.InvI * rtB;

                    Debug.Assert(kTangent > Settings.Epsilon);
                    ccp.TangentMass = 1.0f / kTangent;

                    // Setup a velocity bias for restitution.
                    ccp.VelocityBias = 0.0f;
                    float vRel = cc.Normal.X * (vB.X + -wB * ccp.rB.Y - vA.X - -wA * ccp.rA.Y) +
                                 cc.Normal.Y * (vB.Y + wB * ccp.rB.X - vA.Y - wA * ccp.rA.X);
                    if (vRel < -Settings.VelocityThreshold)
                    {
                        ccp.VelocityBias = -cc.Restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (cc.PointCount == 2)
                {
                    ContactConstraintPoint ccp1 = cc.Points[0];
                    ContactConstraintPoint ccp2 = cc.Points[1];

                    float invMassA = bodyA.InvMass;
                    float invIA    = bodyA.InvI;
                    float invMassB = bodyB.InvMass;
                    float invIB    = bodyB.InvI;

                    float rn1A = ccp1.rA.X * cc.Normal.Y - ccp1.rA.Y * cc.Normal.X;
                    float rn1B = ccp1.rB.X * cc.Normal.Y - ccp1.rB.Y * cc.Normal.X;
                    float rn2A = ccp2.rA.X * cc.Normal.Y - ccp2.rA.Y * cc.Normal.X;
                    float rn2B = ccp2.rB.X * cc.Normal.Y - ccp2.rB.Y * cc.Normal.X;

                    float k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
                    float k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
                    float k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 100.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        cc.K.Col1.X = k11;
                        cc.K.Col1.Y = k12;
                        cc.K.Col2.X = k12;
                        cc.K.Col2.Y = k22;

                        float a = cc.K.Col1.X, b = cc.K.Col2.X, c = cc.K.Col1.Y, d = cc.K.Col2.Y;
                        float det = a * d - b * c;
                        if (det != 0.0f)
                        {
                            det = 1.0f / det;
                        }

                        cc.NormalMass.Col1.X = det * d;
                        cc.NormalMass.Col1.Y = -det * c;
                        cc.NormalMass.Col2.X = -det * b;
                        cc.NormalMass.Col2.Y = det * a;
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        cc.PointCount = 1;
                    }
                }
            }
        }
示例#12
0
        public void Reset(Contact[] contacts, int contactCount, float impulseRatio)
        {
            _contacts = contacts;

            _constraintCount = contactCount;

            // grow the array
            if (Constraints == null || Constraints.Length < _constraintCount)
            {
                Constraints = new ContactConstraint[_constraintCount * 2];

                for (int i = 0; i < _constraintCount * 2; i++)
                {
                    Constraints[i] = new ContactConstraint();
                }
            }

            for (int i = 0; i < _constraintCount; ++i)
            {
                Contact contact = contacts[i];

                Fixture  fixtureA = contact.FixtureA;
                Fixture  fixtureB = contact.FixtureB;
                Shape    shapeA   = fixtureA.Shape;
                Shape    shapeB   = fixtureB.Shape;
                float    radiusA  = shapeA.Radius;
                float    radiusB  = shapeB.Radius;
                Body     bodyA    = fixtureA.Body;
                Body     bodyB    = fixtureB.Body;
                Manifold manifold;
                contact.GetManifold(out manifold);

                float friction    = Settings.MixFriction(fixtureA.Friction, fixtureB.Friction);
                float restitution = Settings.MixRestitution(fixtureA.Restitution, fixtureB.Restitution);

                Vector2 vA = bodyA.LinearVelocityInternal;
                Vector2 vB = bodyB.LinearVelocityInternal;
                float   wA = bodyA.AngularVelocityInternal;
                float   wB = bodyB.AngularVelocityInternal;

                Debug.Assert(manifold.PointCount > 0);

                WorldManifold worldManifold = new WorldManifold(ref manifold, ref bodyA.Xf, radiusA, ref bodyB.Xf,
                                                                radiusB);

                ContactConstraint cc = Constraints[i];
                cc.BodyA      = bodyA;
                cc.BodyB      = bodyB;
                cc.Manifold   = manifold;
                cc.Normal     = worldManifold.Normal;
                cc.PointCount = manifold.PointCount;
                cc.Friction   = friction;

                cc.LocalNormal = manifold.LocalNormal;
                cc.LocalPoint  = manifold.LocalPoint;
                cc.Radius      = radiusA + radiusB;
                cc.Type        = manifold.Type;

                for (int j = 0; j < cc.PointCount; ++j)
                {
                    ManifoldPoint          cp  = manifold.Points[j];
                    ContactConstraintPoint ccp = cc.Points[j];

                    ccp.NormalImpulse  = impulseRatio * cp.NormalImpulse;
                    ccp.TangentImpulse = impulseRatio * cp.TangentImpulse;

                    ccp.LocalPoint = cp.LocalPoint;

                    ccp.rA = worldManifold.Points[j] - bodyA.Sweep.c;
                    ccp.rB = worldManifold.Points[j] - bodyB.Sweep.c;

#if MATH_OVERLOADS
                    float rnA = MathUtils.Cross(ccp.rA, cc.Normal);
                    float rnB = MathUtils.Cross(ccp.rB, cc.Normal);
#else
                    float rnA = ccp.rA.X * cc.Normal.Y - ccp.rA.Y * cc.Normal.X;
                    float rnB = ccp.rB.X * cc.Normal.Y - ccp.rB.Y * cc.Normal.X;
#endif
                    rnA *= rnA;
                    rnB *= rnB;

                    float kNormal = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rnA + bodyB.InvI * rnB;

                    Debug.Assert(kNormal > Settings.Epsilon);
                    ccp.NormalMass = 1.0f / kNormal;

#if MATH_OVERLOADS
                    Vector2 tangent = MathUtils.Cross(cc.Normal, 1.0f);

                    float rtA = MathUtils.Cross(ccp.rA, tangent);
                    float rtB = MathUtils.Cross(ccp.rB, tangent);
#else
                    Vector2 tangent = new Vector2(cc.Normal.Y, -cc.Normal.X);

                    float rtA = ccp.rA.X * tangent.Y - ccp.rA.Y * tangent.X;
                    float rtB = ccp.rB.X * tangent.Y - ccp.rB.Y * tangent.X;
#endif
                    rtA *= rtA;
                    rtB *= rtB;
                    float kTangent = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rtA + bodyB.InvI * rtB;

                    Debug.Assert(kTangent > Settings.Epsilon);
                    ccp.TangentMass = 1.0f / kTangent;

                    // Setup a velocity bias for restitution.
                    ccp.VelocityBias = 0.0f;
                    float vRel = Vector2.Dot(cc.Normal,
                                             vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA));
                    if (vRel < -Settings.VelocityThreshold)
                    {
                        ccp.VelocityBias = -restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (cc.PointCount == 2)
                {
                    ContactConstraintPoint ccp1 = cc.Points[0];
                    ContactConstraintPoint ccp2 = cc.Points[1];

                    float invMassA = bodyA.InvMass;
                    float invIA    = bodyA.InvI;
                    float invMassB = bodyB.InvMass;
                    float invIB    = bodyB.InvI;

                    float rn1A = MathUtils.Cross(ccp1.rA, cc.Normal);
                    float rn1B = MathUtils.Cross(ccp1.rB, cc.Normal);
                    float rn2A = MathUtils.Cross(ccp2.rA, cc.Normal);
                    float rn2B = MathUtils.Cross(ccp2.rB, cc.Normal);

                    float k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
                    float k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
                    float k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 100.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        cc.K          = new Mat22(new Vector2(k11, k12), new Vector2(k12, k22));
                        cc.NormalMass = cc.K.Inverse;
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        cc.PointCount = 1;
                    }
                }

                if (fixtureA.PostSolve != null)
                {
                    fixtureA.PostSolve(cc);
                }

                if (fixtureB.PostSolve != null)
                {
                    fixtureB.PostSolve(cc);
                }
            }
        }
示例#13
0
 public ContactConstraint()
 {
     Points[0] = new ContactConstraintPoint();
     Points[1] = new ContactConstraintPoint();
 }
示例#14
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = Constraints[i];
                Body    bodyA       = c.BodyA;
                Body    bodyB       = c.BodyB;
                float   wA          = bodyA.AngularVelocityInternal;
                float   wB          = bodyB.AngularVelocityInternal;
                Vector2 vA          = bodyA.LinearVelocityInternal;
                Vector2 vB          = bodyB.LinearVelocityInternal;
                float   invMassA    = bodyA.InvMass;
                float   invIA       = bodyA.InvI;
                float   invMassB    = bodyB.InvMass;
                float   invIB       = bodyB.InvI;
                Vector2 normal      = c.Normal;

#if MATH_OVERLOADS
                Vector2 tangent = MathUtils.Cross(normal, 1.0f);
#else
                Vector2 tangent = new Vector2(normal.Y, -normal.X);
#endif
                float friction = c.Friction;

                Debug.Assert(c.PointCount == 1 || c.PointCount == 2);

                // Solve tangent constraints
                for (int j = 0; j < c.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.Points[j];

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv = vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA);

                    // Compute tangent force
                    float vt = Vector2.Dot(dv, tangent);
#else
                    // Relative velocity at contact
                    Vector2 dv = new Vector2(vB.X + (-wB * ccp.rB.Y) - vA.X - (-wA * ccp.rA.Y),
                                             vB.Y + (wB * ccp.rB.X) - vA.Y - (wA * ccp.rA.X));

                    // Compute tangent force
                    float vt = dv.X * tangent.X + dv.Y * tangent.Y;
#endif
                    float lambda = ccp.TangentMass * (-vt);

                    // MathUtils.Clamp the accumulated force
                    float maxFriction = friction * ccp.NormalImpulse;
                    float newImpulse  = MathUtils.Clamp(ccp.TangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda = newImpulse - ccp.TangentImpulse;

#if MATH_OVERLOADS
                    // Apply contact impulse
                    Vector2 P = lambda * tangent;

                    vA -= invMassA * P;
                    wA -= invIA * MathUtils.Cross(ccp.rA, P);

                    vB += invMassB * P;
                    wB += invIB * MathUtils.Cross(ccp.rB, P);
#else
                    // Apply contact impulse
                    Vector2 P = new Vector2(lambda * tangent.X, lambda * tangent.Y);

                    vA.X -= invMassA * P.X;
                    vA.Y -= invMassA * P.Y;
                    wA   -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);

                    vB.X += invMassB * P.X;
                    vB.Y += invMassB * P.Y;
                    wB   += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
#endif
                    ccp.TangentImpulse = newImpulse;
                }

                // Solve normal constraints
                if (c.PointCount == 1)
                {
                    ContactConstraintPoint ccp = c.Points[0];

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv = vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA);

                    // Compute normal impulse
                    float vn     = Vector2.Dot(dv, normal);
                    float lambda = -ccp.NormalMass * (vn - ccp.VelocityBias);

                    // MathUtils.Clamp the accumulated impulse
                    float newImpulse = Math.Max(ccp.NormalImpulse + lambda, 0.0f);
                    lambda = newImpulse - ccp.NormalImpulse;

                    // Apply contact impulse
                    Vector2 P = lambda * normal;
                    vA -= invMassA * P;
                    wA -= invIA * MathUtils.Cross(ccp.rA, P);

                    vB += invMassB * P;
                    wB += invIB * MathUtils.Cross(ccp.rB, P);
#else
                    // Relative velocity at contact
                    Vector2 dv = new Vector2(vB.X + (-wB * ccp.rB.Y) - vA.X - (-wA * ccp.rA.Y),
                                             vB.Y + (wB * ccp.rB.X) - vA.Y - (wA * ccp.rA.X));

                    // Compute normal impulse
                    float vn     = dv.X * normal.X + dv.Y * normal.Y;
                    float lambda = -ccp.NormalMass * (vn - ccp.VelocityBias);

                    // Clamp the accumulated impulse
                    float newImpulse = Math.Max(ccp.NormalImpulse + lambda, 0.0f);
                    lambda = newImpulse - ccp.NormalImpulse;

                    // Apply contact impulse
                    var P = new Vector2(lambda * normal.X, lambda * normal.Y);

                    vA.X -= invMassA * P.X;
                    vA.Y -= invMassA * P.Y;
                    wA   -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);

                    vB.X += invMassB * P.X;
                    vB.Y += invMassB * P.Y;
                    wB   += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
#endif
                    ccp.NormalImpulse = newImpulse;
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn_0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = x' - a
                    //
                    // Plug into above equation:
                    //
                    // vn = A * x + b
                    //    = A * (x' - a) + b
                    //    = A * x' + b - A * a
                    //    = A * x' + b'
                    // b' = b - A * a;

                    ContactConstraintPoint cp1 = c.Points[0];
                    ContactConstraintPoint cp2 = c.Points[1];

                    Vector2 a = new Vector2(cp1.NormalImpulse, cp2.NormalImpulse);
                    Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f);

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);
                    Vector2 dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                    // Compute normal velocity
                    float vn1 = Vector2.Dot(dv1, normal);
                    float vn2 = Vector2.Dot(dv2, normal);

                    Vector2 b = new Vector2(vn1 - cp1.VelocityBias, vn2 - cp2.VelocityBias);
                    b -= MathUtils.Multiply(ref c.K, a);
#else
                    // Relative velocity at contact
                    Vector2 dv1 = new Vector2(vB.X + (-wB * cp1.rB.Y) - vA.X - (-wA * cp1.rA.Y),
                                              vB.Y + (wB * cp1.rB.X) - vA.Y - (wA * cp1.rA.X));
                    Vector2 dv2 = new Vector2(vB.X + (-wB * cp2.rB.Y) - vA.X - (-wA * cp2.rA.Y),
                                              vB.Y + (wB * cp2.rB.X) - vA.Y - (wA * cp2.rA.X));

                    // Compute normal velocity
                    float vn1 = dv1.X * normal.X + dv1.Y * normal.Y;
                    float vn2 = dv2.X * normal.X + dv2.Y * normal.Y;

                    Vector2 b = new Vector2(vn1 - cp1.VelocityBias, vn2 - cp2.VelocityBias);
                    b -= MathUtils.Multiply(ref c.K, ref a); // Inlining didn't help for the multiply.
#endif
                    while (true)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x' + b'
                        //
                        // Solve for x':
                        //
                        // x' = - inv(A) * b'
                        //
                        Vector2 x = -MathUtils.Multiply(ref c.NormalMass, ref b);

                        if (x.X >= 0.0f && x.Y >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            float k_errorTol = 1e-3f;

                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = Vector2.Dot(dv1, normal);
                            vn2 = Vector2.Dot(dv2, normal);

                            Debug.Assert(MathUtils.Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            Debug.Assert(MathUtils.Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1' + a12 * 0 + b1'
                        // vn2 = a21 * x1' + a22 * 0 + b2'
                        //
                        x.X = -cp1.NormalMass * b.X;
                        x.Y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = c.K.col1.Y * x.X + b.Y;

                        if (x.X >= 0.0f && vn2 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = Vector2.Dot(dv1, normal);

                            Debug.Assert(MathUtils.Abs(vn1 - cp1.velocityBias) < k_errorTol);
#endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2' + b1'
                        //   0 = a21 * 0 + a22 * x2' + b2'
                        //
                        x.X = 0.0f;
                        x.Y = -cp2.NormalMass * b.Y;
                        vn1 = c.K.col2.X * x.Y + b.X;
                        vn2 = 0.0f;

                        if (x.Y >= 0.0f && vn1 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = Vector2.Dot(dv2, normal);

                            Debug.Assert(MathUtils.Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.X = 0.0f;
                        x.Y = 0.0f;
                        vn1 = b.X;
                        vn2 = b.Y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                }

                bodyA.LinearVelocityInternal  = vA;
                bodyA.AngularVelocityInternal = wA;
                bodyB.LinearVelocityInternal  = vB;
                bodyB.AngularVelocityInternal = wB;
            }
        }
 public ContactConstraint()
 {
     Points[0] = new ContactConstraintPoint();
     Points[1] = new ContactConstraintPoint();
 }
示例#16
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint cc = Constraints[i];

                float    radiusA  = cc.RadiusA;
                float    radiusB  = cc.RadiusB;
                Body     bodyA    = cc.BodyA;
                Body     bodyB    = cc.BodyB;
                Manifold manifold = cc.Manifold;

                Vector2 vA = bodyA.LinearVelocity;
                Vector2 vB = bodyB.LinearVelocity;
                float   wA = bodyA.AngularVelocity;
                float   wB = bodyB.AngularVelocity;

                Debug.Assert(manifold.PointCount > 0);

                WorldManifold worldManifold = new WorldManifold(ref manifold, ref bodyA.Xf, radiusA, ref bodyB.Xf, radiusB);

                cc.Normal = worldManifold.Normal;

                for (int j = 0; j < cc.PointCount; ++j)
                {
                    ContactConstraintPoint ccp = cc.Points[j];

                    ccp.rA = worldManifold.Points[j] - bodyA.Sweep.C;
                    ccp.rB = worldManifold.Points[j] - bodyB.Sweep.C;
#if MATH_OVERLOADS
                    float rnA = MathUtils.Cross(ccp.rA, cc.Normal);
                    float rnB = MathUtils.Cross(ccp.rB, cc.Normal);
#else
                    float rnA = ccp.rA.X * cc.Normal.Y - ccp.rA.Y * cc.Normal.X;
                    float rnB = ccp.rB.X * cc.Normal.Y - ccp.rB.Y * cc.Normal.X;
#endif
                    rnA *= rnA;
                    rnB *= rnB;

                    float kNormal = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rnA + bodyB.InvI * rnB;

                    Debug.Assert(kNormal > Settings.Epsilon);
                    ccp.NormalMass = 1.0f / kNormal;

#if MATH_OVERLOADS
                    Vector2 tangent = MathUtils.Cross(cc.Normal, 1.0f);

                    float rtA = MathUtils.Cross(ccp.rA, tangent);
                    float rtB = MathUtils.Cross(ccp.rB, tangent);
#else
                    Vector2 tangent = new Vector2(cc.Normal.Y, -cc.Normal.X);

                    float rtA = ccp.rA.X * tangent.Y - ccp.rA.Y * tangent.X;
                    float rtB = ccp.rB.X * tangent.Y - ccp.rB.Y * tangent.X;
#endif
                    rtA *= rtA;
                    rtB *= rtB;
                    float kTangent = bodyA.InvMass + bodyB.InvMass + bodyA.InvI * rtA + bodyB.InvI * rtB;

                    Debug.Assert(kTangent > Settings.Epsilon);
                    ccp.TangentMass = 1.0f / kTangent;

                    // Setup a velocity bias for restitution.
                    ccp.VelocityBias = 0.0f;
                    float vRel = Vector2.Dot(cc.Normal, vB + new Vector2(-wB * ccp.rB.Y, wB * ccp.rB.X) - vA - new Vector2(-wA * ccp.rA.Y, wA * ccp.rA.X));
                    if (vRel < -Settings.VelocityThreshold)
                    {
                        ccp.VelocityBias = -cc.Restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (cc.PointCount == 2)
                {
                    ContactConstraintPoint ccp1 = cc.Points[0];
                    ContactConstraintPoint ccp2 = cc.Points[1];

                    float invMassA = bodyA.InvMass;
                    float invIA    = bodyA.InvI;
                    float invMassB = bodyB.InvMass;
                    float invIB    = bodyB.InvI;

                    float rn1A = MathUtils.Cross(ccp1.rA, cc.Normal);
                    float rn1B = MathUtils.Cross(ccp1.rB, cc.Normal);
                    float rn2A = MathUtils.Cross(ccp2.rA, cc.Normal);
                    float rn2B = MathUtils.Cross(ccp2.rB, cc.Normal);

                    float k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
                    float k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
                    float k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 100.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        cc.K          = new Mat22(new Vector2(k11, k12), new Vector2(k12, k22));
                        cc.NormalMass = cc.K.Inverse;
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        cc.PointCount = 1;
                    }
                }
            }
        }