public static void MinimizeHopcroft(Automaton a) { a.Determinize(); IList<Transition> tr = a.Initial.Transitions; if (tr.Count == 1) { Transition t = tr[0]; if (t.To == a.Initial && t.Min == char.MinValue && t.Max == char.MaxValue) { return; } } a.Totalize(); // Make arrays for numbered states and effective alphabet. HashSet<State> ss = a.GetStates(); var states = new State[ss.Count]; int number = 0; foreach (State q in ss) { states[number] = q; q.Number = number++; } char[] sigma = a.GetStartPoints(); // Initialize data structures. var reverse = new List<List<LinkedList<State>>>(); foreach (State s in states) { var v = new List<LinkedList<State>>(); Initialize(ref v, sigma.Length); reverse.Add(v); } var reverseNonempty = new bool[states.Length, sigma.Length]; var partition = new List<LinkedList<State>>(); Initialize(ref partition, states.Length); var block = new int[states.Length]; var active = new StateList[states.Length, sigma.Length]; var active2 = new StateListNode[states.Length, sigma.Length]; var pending = new LinkedList<IntPair>(); var pending2 = new bool[sigma.Length, states.Length]; var split = new List<State>(); var split2 = new bool[states.Length]; var refine = new List<int>(); var refine2 = new bool[states.Length]; var splitblock = new List<List<State>>(); Initialize(ref splitblock, states.Length); for (int q = 0; q < states.Length; q++) { splitblock[q] = new List<State>(); partition[q] = new LinkedList<State>(); for (int x = 0; x < sigma.Length; x++) { reverse[q][x] = new LinkedList<State>(); active[q, x] = new StateList(); } } // Find initial partition and reverse edges. foreach (State qq in states) { int j = qq.Accept ? 0 : 1; partition[j].AddLast(qq); block[qq.Number] = j; for (int x = 0; x < sigma.Length; x++) { char y = sigma[x]; State p = qq.Step(y); reverse[p.Number][x].AddLast(qq); reverseNonempty[p.Number, x] = true; } } // Initialize active sets. for (int j = 0; j <= 1; j++) { for (int x = 0; x < sigma.Length; x++) { foreach (State qq in partition[j]) { if (reverseNonempty[qq.Number, x]) { active2[qq.Number, x] = active[j, x].Add(qq); } } } } // Initialize pending. for (int x = 0; x < sigma.Length; x++) { int a0 = active[0, x].Size; int a1 = active[1, x].Size; int j = a0 <= a1 ? 0 : 1; pending.AddLast(new IntPair(j, x)); pending2[x, j] = true; } // Process pending until fixed point. int k = 2; while (pending.Count > 0) { IntPair ip = pending.RemoveAndReturnFirst(); int p = ip.N1; int x = ip.N2; pending2[x, p] = false; // Find states that need to be split off their blocks. for (StateListNode m = active[p, x].First; m != null; m = m.Next) { foreach (State s in reverse[m.State.Number][x]) { if (!split2[s.Number]) { split2[s.Number] = true; split.Add(s); int j = block[s.Number]; splitblock[j].Add(s); if (!refine2[j]) { refine2[j] = true; refine.Add(j); } } } } // Refine blocks. foreach (int j in refine) { if (splitblock[j].Count < partition[j].Count) { LinkedList<State> b1 = partition[j]; LinkedList<State> b2 = partition[k]; foreach (State s in splitblock[j]) { b1.Remove(s); b2.AddLast(s); block[s.Number] = k; for (int c = 0; c < sigma.Length; c++) { StateListNode sn = active2[s.Number, c]; if (sn != null && sn.StateList == active[j, c]) { sn.Remove(); active2[s.Number, c] = active[k, c].Add(s); } } } // Update pending. for (int c = 0; c < sigma.Length; c++) { int aj = active[j, c].Size; int ak = active[k, c].Size; if (!pending2[c, j] && 0 < aj && aj <= ak) { pending2[c, j] = true; pending.AddLast(new IntPair(j, c)); } else { pending2[c, k] = true; pending.AddLast(new IntPair(k, c)); } } k++; } foreach (State s in splitblock[j]) { split2[s.Number] = false; } refine2[j] = false; splitblock[j].Clear(); } split.Clear(); refine.Clear(); } // Make a new state for each equivalence class, set initial state. var newstates = new State[k]; for (int n = 0; n < newstates.Length; n++) { var s = new State(); newstates[n] = s; foreach (State q in partition[n]) { if (q == a.Initial) { a.Initial = s; } s.Accept = q.Accept; s.Number = q.Number; // Select representative. q.Number = n; } } // Build transitions and set acceptance. foreach (State s in newstates) { s.Accept = states[s.Number].Accept; foreach (Transition t in states[s.Number].Transitions) { s.Transitions.Add(new Transition(t.Min, t.Max, newstates[t.To.Number])); } } a.RemoveDeadTransitions(); }
/// <summary> /// Returns a (deterministic) automaton that accepts the complement of the language of the /// given automaton. /// </summary> /// <param name="a">The automaton.</param> /// <returns>A (deterministic) automaton that accepts the complement of the language of the /// given automaton.</returns> /// <remarks> /// Complexity: linear in number of states (if already deterministic). /// </remarks> public static Automaton Complement(Automaton a) { a = a.CloneExpandedIfRequired(); a.Determinize(); a.Totalize(); foreach (State p in a.GetStates()) { p.Accept = !p.Accept; } a.RemoveDeadTransitions(); return a; }
/// <summary> /// Minimizes the given automaton using Huffman's algorithm. /// </summary> /// <param name="a">The automaton.</param> public static void MinimizeHuffman(Automaton a) { a.Determinize(); a.Totalize(); HashSet<State> ss = a.GetStates(); var transitions = new Transition[ss.Count][]; State[] states = ss.ToArray(); var mark = new List<List<bool>>(); var triggers = new List<List<HashSet<IntPair>>>(); foreach (State t in states) { var v = new List<HashSet<IntPair>>(); Initialize(ref v, states.Length); triggers.Add(v); } // Initialize marks based on acceptance status and find transition arrays. for (int n1 = 0; n1 < states.Length; n1++) { states[n1].Number = n1; transitions[n1] = states[n1].GetSortedTransitions(false).ToArray(); for (int n2 = n1 + 1; n2 < states.Length; n2++) { if (states[n1].Accept != states[n2].Accept) { mark[n1][n2] = true; } } } // For all pairs, see if states agree. for (int n1 = 0; n1 < states.Length; n1++) { for (int n2 = n1 + 1; n2 < states.Length; n2++) { if (!mark[n1][n2]) { if (MinimizationOperations.StatesAgree(transitions, mark, n1, n2)) { MinimizationOperations.AddTriggers(transitions, triggers, n1, n2); } else { MinimizationOperations.MarkPair(mark, triggers, n1, n2); } } } } // Assign equivalence class numbers to states. int numclasses = 0; foreach (State t in states) { t.Number = -1; } for (int n1 = 0; n1 < states.Length; n1++) { if (states[n1].Number == -1) { states[n1].Number = numclasses; for (int n2 = n1 + 1; n2 < states.Length; n2++) { if (!mark[n1][n2]) { states[n2].Number = numclasses; } } numclasses++; } } // Make a new state for each equivalence class. var newstates = new State[numclasses]; for (int n = 0; n < numclasses; n++) { newstates[n] = new State(); } // Select a class representative for each class and find the new initial state. for (int n = 0; n < states.Length; n++) { newstates[states[n].Number].Number = n; if (states[n] == a.Initial) { a.Initial = newstates[states[n].Number]; } } // Build transitions and set acceptance. for (int n = 0; n < numclasses; n++) { State s = newstates[n]; s.Accept = states[s.Number].Accept; foreach (Transition t in states[s.Number].Transitions) { s.Transitions.Add(new Transition(t.Min, t.Max, newstates[t.To.Number])); } } a.RemoveDeadTransitions(); }