/** * O(n log n) Convex Hull Algorithm. * Accepts a list of vertices as Vector3 and triangulates them according to a projection * plane defined as planeNormal. Algorithm will output vertices, indices and UV coordinates * as arrays */ public static bool MonotoneChain(List <Vector3> vertices, Vector3 normal, out List <Triangle> tri, TextureRegion texRegion) { int count = vertices.Count; // we cannot triangulate less than 3 points. Use minimum of 3 points if (count < 3) { tri = null; return(false); } // first, we map from 3D points into a 2D plane represented by the provided normal Vector3 u = Vector3.Normalize(Vector3.Cross(normal, Vector3.up)); if (Vector3.zero == u) { u = Vector3.Normalize(Vector3.Cross(normal, Vector3.forward)); } Vector3 v = Vector3.Cross(u, normal); // generate an array of mapped values Mapped2D[] mapped = new Mapped2D[count]; // these values will be used to generate new UV coordinates later on float maxDivX = float.MinValue; float maxDivY = float.MinValue; float minDivX = float.MaxValue; float minDivY = float.MaxValue; // map the 3D vertices into the 2D mapped values for (int i = 0; i < count; i++) { Vector3 vertToAdd = vertices[i]; Mapped2D newMappedValue = new Mapped2D(vertToAdd, u, v); Vector2 mapVal = newMappedValue.mappedValue; // grab our maximal values so we can map UV's in a proper range maxDivX = Mathf.Max(maxDivX, mapVal.x); maxDivY = Mathf.Max(maxDivY, mapVal.y); minDivX = Mathf.Min(minDivX, mapVal.x); minDivY = Mathf.Min(minDivY, mapVal.y); mapped[i] = newMappedValue; } // sort our newly generated array values Array.Sort <Mapped2D>(mapped, (a, b) => { Vector2 x = a.mappedValue; Vector2 p = b.mappedValue; return((x.x < p.x || (x.x == p.x && x.y < p.y)) ? -1 : 1); }); // our final hull mappings will end up in here Mapped2D[] hulls = new Mapped2D[count + 1]; int k = 0; // build the lower hull of the chain for (int i = 0; i < count; i++) { while (k >= 2) { Vector2 mA = hulls[k - 2].mappedValue; Vector2 mB = hulls[k - 1].mappedValue; Vector2 mC = mapped[i].mappedValue; if (Intersector.TriArea2D(mA.x, mA.y, mB.x, mB.y, mC.x, mC.y) > 0.0f) { break; } k--; } hulls[k++] = mapped[i]; } // build the upper hull of the chain for (int i = count - 2, t = k + 1; i >= 0; i--) { while (k >= t) { Vector2 mA = hulls[k - 2].mappedValue; Vector2 mB = hulls[k - 1].mappedValue; Vector2 mC = mapped[i].mappedValue; if (Intersector.TriArea2D(mA.x, mA.y, mB.x, mB.y, mC.x, mC.y) > 0.0f) { break; } k--; } hulls[k++] = mapped[i]; } // finally we can build our mesh, generate all the variables // and fill them up int vertCount = k - 1; int triCount = (vertCount - 2) * 3; // this should not happen, but here just in case if (vertCount < 3) { tri = null; return(false); } // ensure List does not dynamically grow, performing copy ops each time! tri = new List <Triangle>(triCount / 3); float width = maxDivX - minDivX; float height = maxDivY - minDivY; int indexCount = 1; // generate both the vertices and uv's in this loop for (int i = 0; i < triCount; i += 3) { // the Vertices in our triangle Mapped2D posA = hulls[0]; Mapped2D posB = hulls[indexCount]; Mapped2D posC = hulls[indexCount + 1]; // generate UV Maps Vector2 uvA = posA.mappedValue; Vector2 uvB = posB.mappedValue; Vector2 uvC = posC.mappedValue; uvA.x = (uvA.x - minDivX) / width; uvA.y = (uvA.y - minDivY) / height; uvB.x = (uvB.x - minDivX) / width; uvB.y = (uvB.y - minDivY) / height; uvC.x = (uvC.x - minDivX) / width; uvC.y = (uvC.y - minDivY) / height; Triangle newTriangle = new Triangle(posA.originalValue, posB.originalValue, posC.originalValue); // ensure our UV coordinates are mapped into the requested TextureRegion newTriangle.SetUV(texRegion.Map(uvA), texRegion.Map(uvB), texRegion.Map(uvC)); // the normals is the same for all vertices since the final mesh is completly flat newTriangle.SetNormal(normal, normal, normal); newTriangle.ComputeTangents(); tri.Add(newTriangle); indexCount++; } return(true); }
/** * Perform an intersection between Plane and Triangle. This is a comprehensive function * which alwo builds a HULL Hirearchy useful for decimation projects. This obviously * comes at the cost of more complex code and runtime checks, but the returned results * are much more flexible. * Results will be filled into the IntersectionResult reference. Check result.isValid() * for the final results. */ public static void Intersect(Plane pl, Triangle tri, ref IntersectionResult result) { // clear the previous results from the IntersectionResult result.Clear(); // grab local variables for easier access Vector3 a = tri.positionA; Vector3 b = tri.positionB; Vector3 c = tri.positionC; // check to see which side of the plane the points all // lay in. SideOf operation is a simple dot product and some comparison // operations, so these are a very quick checks SideOfPlane sa = pl.SideOf(a); SideOfPlane sb = pl.SideOf(b); SideOfPlane sc = pl.SideOf(c); // we cannot intersect if the triangle points all fall on the same side // of the plane. This is an easy early out test as no intersections are possible. if (sa == sb && sb == sc) { return; } // detect cases where two points lay straight on the plane, meaning // that the plane is actually parralel with one of the edges of the triangle else if ((sa == SideOfPlane.ON && sa == sb) || (sa == SideOfPlane.ON && sa == sc) || (sb == SideOfPlane.ON && sb == sc)) { return; } // keep in mind that intersection points are shared by both // the upper HULL and lower HULL hence they lie perfectly // on the plane that cut them Vector3 qa; Vector3 qb; // check the cases where the points of the triangle actually lie on the plane itself // in these cases, there is only going to be 2 triangles, one for the upper HULL and // the other on the lower HULL // we just need to figure out which points to accept into the upper or lower hulls. if (sa == SideOfPlane.ON) { // if the point a is on the plane, test line b-c if (Intersector.Intersect(pl, b, c, out qa)) { // line b-c intersected, construct out triangles and return approprietly result.AddIntersectionPoint(qa); result.AddIntersectionPoint(a); // our two generated triangles, we need to figure out which // triangle goes into the UPPER hull and which goes into the LOWER hull Triangle ta = new Triangle(a, b, qa); Triangle tb = new Triangle(a, qa, c); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pq = tri.GenerateUV(qa); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pa, pb, pq); tb.SetUV(pa, pq, pc); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pq = tri.GenerateNormal(qa); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pa, pb, pq); tb.SetNormal(pa, pq, pc); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pq = tri.GenerateTangent(qa); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pa, pb, pq); tb.SetTangent(pa, pq, pc); } // b point lies on the upside of the plane if (sb == SideOfPlane.UP) { result.AddUpperHull(ta).AddLowerHull(tb); } // b point lies on the downside of the plane else if (sb == SideOfPlane.DOWN) { result.AddUpperHull(tb).AddLowerHull(ta); } } } // test the case where the b point lies on the plane itself else if (sb == SideOfPlane.ON) { // if the point b is on the plane, test line a-c if (Intersector.Intersect(pl, a, c, out qa)) { // line a-c intersected, construct out triangles and return approprietly result.AddIntersectionPoint(qa); result.AddIntersectionPoint(b); // our two generated triangles, we need to figure out which // triangle goes into the UPPER hull and which goes into the LOWER hull Triangle ta = new Triangle(a, b, qa); Triangle tb = new Triangle(qa, b, c); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pq = tri.GenerateUV(qa); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pa, pb, pq); tb.SetUV(pq, pb, pc); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pq = tri.GenerateNormal(qa); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pa, pb, pq); tb.SetNormal(pq, pb, pc); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pq = tri.GenerateTangent(qa); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pa, pb, pq); tb.SetTangent(pq, pb, pc); } // a point lies on the upside of the plane if (sa == SideOfPlane.UP) { result.AddUpperHull(ta).AddLowerHull(tb); } // a point lies on the downside of the plane else if (sa == SideOfPlane.DOWN) { result.AddUpperHull(tb).AddLowerHull(ta); } } } // test the case where the c point lies on the plane itself else if (sc == SideOfPlane.ON) { // if the point c is on the plane, test line a-b if (Intersector.Intersect(pl, a, b, out qa)) { // line a-c intersected, construct out triangles and return approprietly result.AddIntersectionPoint(qa); result.AddIntersectionPoint(c); // our two generated triangles, we need to figure out which // triangle goes into the UPPER hull and which goes into the LOWER hull Triangle ta = new Triangle(a, qa, c); Triangle tb = new Triangle(qa, b, c); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pq = tri.GenerateUV(qa); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pa, pq, pc); tb.SetUV(pq, pb, pc); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pq = tri.GenerateNormal(qa); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pa, pq, pc); tb.SetNormal(pq, pb, pc); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pq = tri.GenerateTangent(qa); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pa, pq, pc); tb.SetTangent(pq, pb, pc); } // a point lies on the upside of the plane if (sa == SideOfPlane.UP) { result.AddUpperHull(ta).AddLowerHull(tb); } // a point lies on the downside of the plane else if (sa == SideOfPlane.DOWN) { result.AddUpperHull(tb).AddLowerHull(ta); } } } // at this point, all edge cases have been tested and failed, we need to perform // full intersection tests against the lines. From this point onwards we will generate // 3 triangles else if (sa != sb && Intersector.Intersect(pl, a, b, out qa)) { // intersection found against a - b result.AddIntersectionPoint(qa); // since intersection was found against a - b, we need to check which other // lines to check (we only need to check one more line) for intersection. // the line we check against will be the line against the point which lies on // the other side of the plane. if (sa == sc) { // we likely have an intersection against line b-c which will complete this loop if (Intersector.Intersect(pl, b, c, out qb)) { result.AddIntersectionPoint(qb); // our three generated triangles. Two of these triangles will end // up on either the UPPER or LOWER hulls. Triangle ta = new Triangle(qa, b, qb); Triangle tb = new Triangle(a, qa, qb); Triangle tc = new Triangle(a, qb, c); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pqa = tri.GenerateUV(qa); Vector2 pqb = tri.GenerateUV(qb); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pqa, pb, pqb); tb.SetUV(pa, pqa, pqb); tc.SetUV(pa, pqb, pc); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pqa = tri.GenerateNormal(qa); Vector3 pqb = tri.GenerateNormal(qb); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pqa, pb, pqb); tb.SetNormal(pa, pqa, pqb); tc.SetNormal(pa, pqb, pc); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pqa = tri.GenerateTangent(qa); Vector4 pqb = tri.GenerateTangent(qb); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pqa, pb, pqb); tb.SetTangent(pa, pqa, pqb); tc.SetTangent(pa, pqb, pc); } if (sa == SideOfPlane.UP) { result.AddUpperHull(tb).AddUpperHull(tc).AddLowerHull(ta); } else { result.AddLowerHull(tb).AddLowerHull(tc).AddUpperHull(ta); } } } else { // in this scenario, the point a is a "lone" point which lies in either upper // or lower HULL. We need to perform another intersection to find the last point if (Intersector.Intersect(pl, a, c, out qb)) { result.AddIntersectionPoint(qb); // our three generated triangles. Two of these triangles will end // up on either the UPPER or LOWER hulls. Triangle ta = new Triangle(a, qa, qb); Triangle tb = new Triangle(qa, b, c); Triangle tc = new Triangle(qb, qa, c); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pqa = tri.GenerateUV(qa); Vector2 pqb = tri.GenerateUV(qb); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pa, pqa, pqb); tb.SetUV(pqa, pb, pc); tc.SetUV(pqb, pqa, pc); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pqa = tri.GenerateNormal(qa); Vector3 pqb = tri.GenerateNormal(qb); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pa, pqa, pqb); tb.SetNormal(pqa, pb, pc); tc.SetNormal(pqb, pqa, pc); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pqa = tri.GenerateTangent(qa); Vector4 pqb = tri.GenerateTangent(qb); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pa, pqa, pqb); tb.SetTangent(pqa, pb, pc); tc.SetTangent(pqb, pqa, pc); } if (sa == SideOfPlane.UP) { result.AddUpperHull(ta).AddLowerHull(tb).AddLowerHull(tc); } else { result.AddLowerHull(ta).AddUpperHull(tb).AddUpperHull(tc); } } } } // if line a-b did not intersect (or the lie on the same side of the plane) // this simplifies the problem a fair bit. This means we have an intersection // in line a-c and b-c, which we can use to build a new UPPER and LOWER hulls // we are expecting both of these intersection tests to pass, otherwise something // went wrong (float errors? missed a checked case?) else if (Intersector.Intersect(pl, c, a, out qa) && Intersector.Intersect(pl, c, b, out qb)) { // in here we know that line a-b actually lie on the same side of the plane, this will // simplify the rest of the logic. We also have our intersection points // the computed UV coordinate of the intersection point result.AddIntersectionPoint(qa); result.AddIntersectionPoint(qb); // our three generated triangles. Two of these triangles will end // up on either the UPPER or LOWER hulls. Triangle ta = new Triangle(qa, qb, c); Triangle tb = new Triangle(a, qb, qa); Triangle tc = new Triangle(a, b, qb); // generate UV coordinates if there is any if (tri.hasUV) { // the computed UV coordinate if the intersection point Vector2 pqa = tri.GenerateUV(qa); Vector2 pqb = tri.GenerateUV(qb); Vector2 pa = tri.uvA; Vector2 pb = tri.uvB; Vector2 pc = tri.uvC; ta.SetUV(pqa, pqb, pc); tb.SetUV(pa, pqb, pqa); tc.SetUV(pa, pb, pqb); } // generate Normal coordinates if there is any if (tri.hasNormal) { // the computed Normal coordinate if the intersection point Vector3 pqa = tri.GenerateNormal(qa); Vector3 pqb = tri.GenerateNormal(qb); Vector3 pa = tri.normalA; Vector3 pb = tri.normalB; Vector3 pc = tri.normalC; ta.SetNormal(pqa, pqb, pc); tb.SetNormal(pa, pqb, pqa); tc.SetNormal(pa, pb, pqb); } // generate Tangent coordinates if there is any if (tri.hasTangent) { // the computed Tangent coordinate if the intersection point Vector4 pqa = tri.GenerateTangent(qa); Vector4 pqb = tri.GenerateTangent(qb); Vector4 pa = tri.tangentA; Vector4 pb = tri.tangentB; Vector4 pc = tri.tangentC; ta.SetTangent(pqa, pqb, pc); tb.SetTangent(pa, pqb, pqa); tc.SetTangent(pa, pb, pqb); } if (sa == SideOfPlane.UP) { result.AddUpperHull(tb).AddUpperHull(tc).AddLowerHull(ta); } else { result.AddLowerHull(tb).AddLowerHull(tc).AddUpperHull(ta); } } }
/** * Slice the gameobject mesh (if any) using the Plane, which will generate * a maximum of 2 other Meshes. * This function will recalculate new UV coordinates to ensure textures are applied * properly. * Returns null if no intersection has been found or the GameObject does not contain * a valid mesh to cut. */ public static SlicedHull Slice(Mesh sharedMesh, Plane pl, bool genCrossSection = true) { if (sharedMesh == null) { return(null); } Vector3[] verts = sharedMesh.vertices; Vector2[] uv = sharedMesh.uv; Vector3[] norm = sharedMesh.normals; Vector4[] tan = sharedMesh.tangents; int submeshCount = sharedMesh.subMeshCount; // each submesh will be sliced and placed in its own array structure SlicedSubmesh[] slices = new SlicedSubmesh[submeshCount]; // the cross section hull is common across all submeshes List <Vector3> crossHull = new List <Vector3>(); // we reuse this object for all intersection tests IntersectionResult result = new IntersectionResult(); // see if we would like to split the mesh using uv, normals and tangents bool genUV = verts.Length == uv.Length; bool genNorm = verts.Length == norm.Length; bool genTan = verts.Length == tan.Length; // iterate over all the submeshes individually. vertices and indices // are all shared within the submesh for (int submesh = 0; submesh < submeshCount; submesh++) { int[] indices = sharedMesh.GetTriangles(submesh); int indicesCount = indices.Length; SlicedSubmesh mesh = new SlicedSubmesh(); // loop through all the mesh vertices, generating upper and lower hulls // and all intersection points for (int index = 0; index < indicesCount; index += 3) { int i0 = indices[index + 0]; int i1 = indices[index + 1]; int i2 = indices[index + 2]; Triangle newTri = new Triangle(verts[i0], verts[i1], verts[i2]); // generate UV if available if (genUV) { newTri.SetUV(uv[i0], uv[i1], uv[i2]); } // generate normals if available if (genNorm) { newTri.SetNormal(norm[i0], norm[i1], norm[i2]); } // generate tangents if available if (genTan) { newTri.SetTangent(tan[i0], tan[i1], tan[i2]); } // slice this particular triangle with the provided // plane if (newTri.Split(pl, result)) { int upperHullCount = result.upperHullCount; int lowerHullCount = result.lowerHullCount; int interHullCount = result.intersectionPointCount; for (int i = 0; i < upperHullCount; i++) { mesh.upperHull.Add(result.upperHull[i]); } for (int i = 0; i < lowerHullCount; i++) { mesh.lowerHull.Add(result.lowerHull[i]); } for (int i = 0; i < interHullCount; i++) { crossHull.Add(result.intersectionPoints[i]); } } else { SideOfPlane side = pl.SideOf(verts[i0]); if (side == SideOfPlane.UP || side == SideOfPlane.ON) { mesh.upperHull.Add(newTri); } else { mesh.lowerHull.Add(newTri); } } } // register into the index slices[submesh] = mesh; } return(CreateFrom(slices, CreateFrom(crossHull, pl.normal))); }
/** * Slice the gameobject mesh (if any) using the Plane, which will generate * a maximum of 2 other Meshes. * This function will recalculate new UV coordinates to ensure textures are applied * properly. * Returns null if no intersection has been found or the GameObject does not contain * a valid mesh to cut. */ public static SlicedHull Slice(Mesh sharedMesh, Plane pl, TextureRegion region, int crossIndex) { if (sharedMesh == null) { return(null); } Vector3[] verts = sharedMesh.vertices; Vector2[] uv = sharedMesh.uv; Vector3[] norm = sharedMesh.normals; Vector4[] tan = sharedMesh.tangents; int submeshCount = sharedMesh.subMeshCount; // each submesh will be sliced and placed in its own array structure SlicedSubmesh[] slices = new SlicedSubmesh[submeshCount]; // the cross section hull is common across all submeshes List <Vector3> crossHull = new List <Vector3>(); // we reuse this object for all intersection tests IntersectionResult result = new IntersectionResult(); // see if we would like to split the mesh using uv, normals and tangents bool genUV = verts.Length == uv.Length; bool genNorm = verts.Length == norm.Length; bool genTan = verts.Length == tan.Length; // iterate over all the submeshes individually. vertices and indices // are all shared within the submesh for (int submesh = 0; submesh < submeshCount; submesh++) { int[] indices = sharedMesh.GetTriangles(submesh); int indicesCount = indices.Length; SlicedSubmesh mesh = new SlicedSubmesh(); // loop through all the mesh vertices, generating upper and lower hulls // and all intersection points for (int index = 0; index < indicesCount; index += 3) { int i0 = indices[index + 0]; int i1 = indices[index + 1]; int i2 = indices[index + 2]; Triangle newTri = new Triangle(verts[i0], verts[i1], verts[i2]); // generate UV if available if (genUV) { newTri.SetUV(uv[i0], uv[i1], uv[i2]); } // generate normals if available if (genNorm) { newTri.SetNormal(norm[i0], norm[i1], norm[i2]); } // generate tangents if available if (genTan) { newTri.SetTangent(tan[i0], tan[i1], tan[i2]); } // slice this particular triangle with the provided // plane if (newTri.Split(pl, result)) { int upperHullCount = result.upperHullCount; int lowerHullCount = result.lowerHullCount; int interHullCount = result.intersectionPointCount; for (int i = 0; i < upperHullCount; i++) { mesh.upperHull.Add(result.upperHull[i]); } for (int i = 0; i < lowerHullCount; i++) { mesh.lowerHull.Add(result.lowerHull[i]); } for (int i = 0; i < interHullCount; i++) { crossHull.Add(result.intersectionPoints[i]); } } else { SideOfPlane sa = pl.SideOf(verts[i0]); SideOfPlane sb = pl.SideOf(verts[i1]); SideOfPlane sc = pl.SideOf(verts[i2]); SideOfPlane side = SideOfPlane.ON; if (sa != SideOfPlane.ON) { side = sa; } if (sb != SideOfPlane.ON) { Debug.Assert(side == SideOfPlane.ON || side == sb); side = sb; } if (sc != SideOfPlane.ON) { Debug.Assert(side == SideOfPlane.ON || side == sc); side = sc; } if (side == SideOfPlane.UP || side == SideOfPlane.ON) { mesh.upperHull.Add(newTri); } else { mesh.lowerHull.Add(newTri); } } } // register into the index slices[submesh] = mesh; } // check if slicing actually occured for (int i = 0; i < slices.Length; i++) { // check if at least one of the submeshes was sliced. If so, stop checking // because we need to go through the generation step if (slices[i] != null && slices[i].isValid) { return(CreateFrom(slices, CreateFrom(crossHull, pl.normal, region), crossIndex)); } } // no slicing occured, just return null to signify return(null); }