示例#1
0
        /// <summary>
        /// Trains the model to recognise the specified input as the specified symbol
        /// </summary>
        public void Train(WrappedBitmap inputData, TSymbol representedValue, uint rounds)
        {
            var initialGeneration = Enumerable.Range(0, (int)rounds)
                                    .Select(i => new Scorer(new TuningParams.Scoring())) // TODO nested constructors is smelly
                                    .Select(s => new ScorerScorePair(s, s.Score(inputData)))
                                    .AsParallel()
                                    .OrderByDescending(s => s.Score);

            // Having acquired the initial set of sampling pixels via sheer randomness, we'll work with
            // the best we've got and try and massage them into something better.
            var mutParams             = new TuningParams.Mutation();
            var initialBestCandidates = initialGeneration.Take(100);            // TODO parameterise magic value (which was decided totally arbitrarily anyway)
            var initialBestCandidatesWithMutatedVariants = from p in initialBestCandidates
                                                           let mutatedOffspring = p.Scorer.MutateMany(mutParams)
                                                                                  let mutatedScores = from m in mutatedOffspring
                                                                                                      let mutatedScore = m.Score(inputData)
                                                                                                                         select new ScorerScorePair(m, mutatedScore)
                                                                                                                         select new ParentChildScoreCollection(p, mutatedScores);

            var bestOftheMutantStrains = initialBestCandidatesWithMutatedVariants
                                         .SelectMany(x => x.Children)
                                         .OrderByDescending(s => s.Score)
                                         .First();

            // Compute some stats for these mutations. These stats are for interest only, they don't affect any computation.
            Benchmarking.Mutation.AddDataPoints(initialBestCandidatesWithMutatedVariants);

            var rec = new Recogniser <TSymbol>(representedValue, bestOftheMutantStrains.Scorer);

            RegisterRecogniser(rec);
        }
示例#2
0
 /// <summary>
 /// Adds a recogniser to the collection, replacing it if it already exists
 /// </summary>
 private void RegisterRecogniser(Recogniser <TSymbol> recogniser)
 {
     // TODO could change to Dictionary<TSymbol, List<Recogniser<TSymbol>>> for training multiple inputs for the same symbol??
     _recognisers[recogniser.Symbol] = recogniser;
 }