示例#1
0
        // Finding the square root of a number is similar to division since
        // it is a search algorithm.  The TestSqrtBits method shown next is
        // very much like TestDivideBits().  It works the same as
        // FindULSqrRoot(), but on a bigger scale.
        /*
          private void TestSqrtBits( int TestIndex, Integer Square, Integer SqrRoot )
        {
        Integer Test1 = new Integer();

        uint BitTest = 0x80000000;
        for( int BitCount = 31; BitCount >= 0; BitCount-- )
          {
          Test1.Copy( SqrRoot );
          Test1.D[TestIndex] |= BitTest;
          Test1.Square();
          if( !Square.ParamIsGreater( Test1 ) )
        SqrRoot.D[TestIndex] |= BitTest; // Use the bit.

          BitTest >>= 1;
          }
        }
        */
        // In the SquareRoot() method SqrRoot.Index is half of Square.Index.
        // Compare this to the Square() method where the Carry might or
        // might not increment the index to an odd number.  (So if the Index
        // was 5 its square root would have an Index of 5 / 2 = 2.)
        // The SquareRoot1() method uses FindULSqrRoot() either to find the
        // whole answer, if it's a small number, or it uses it to find the
        // top part.  Then from there it goes on to a bit by bit search
        // with TestSqrtBits().
        public bool SquareRoot( Integer Square, Integer SqrRoot )
        {
            ulong ToMatch;
            if( Square.IsULong() )
              {
              ToMatch = Square.GetAsULong();
              SqrRoot.SetD( 0, FindULSqrRoot( ToMatch ));
              SqrRoot.SetIndex( 0 );
              if( (SqrRoot.GetD(0 ) * SqrRoot.GetD( 0 )) == ToMatch )
            return true;
              else
            return false;

              }

            int TestIndex = Square.GetIndex() >> 1; // LgSquare.Index / 2;
            SqrRoot.SetDigitAndClear( TestIndex, 1 );
            // if( (TestIndex * 2) > (LgSquare.Index - 1) )
            if( (TestIndex << 1) > (Square.GetIndex() - 1) )
              {
              ToMatch = Square.GetD( Square.GetIndex());
              }
            else
              {
              // LgSquare.Index is at least 2 here.
              ToMatch = Square.GetD( Square.GetIndex()) << 32;
              ToMatch |= Square.GetD( Square.GetIndex() - 1 );
              }

            SqrRoot.SetD( TestIndex, FindULSqrRoot( ToMatch ));

            TestIndex--;
            while( true )
              {
              // TestSqrtBits( TestIndex, LgSquare, LgSqrRoot );
              SearchSqrtXPart( TestIndex, Square, SqrRoot );
              if( TestIndex == 0 )
            break;

              TestIndex--;
              }

            // Avoid squaring the whole thing to see if it's an exact square root:
            if( ((SqrRoot.GetD( 0 ) * SqrRoot.GetD( 0 )) & 0xFFFFFFFF) != Square.GetD( 0 ))
              return false;

            TestForSquareRoot.Copy( SqrRoot );
            DoSquare( TestForSquareRoot );
            if( Square.IsEqual( TestForSquareRoot ))
              return true;
            else
              return false;
        }
示例#2
0
        private void LongDivide3( Integer ToDivide,
                            Integer DivideBy,
                            Integer Quotient,
                            Integer Remainder )
        {
            int TestIndex = ToDivide.GetIndex() - DivideBy.GetIndex();
            if( TestIndex < 0 )
              throw( new Exception( "TestIndex < 0 in Divide3." ));

            if( TestIndex != 0 )
              {
              // Is 1 too high?
              TestForDivide1.SetDigitAndClear( TestIndex, 1 );
              MultiplyTopOne( TestForDivide1, DivideBy );
              if( ToDivide.ParamIsGreater( TestForDivide1 ))
            TestIndex--;

              }

            // Keep a copy of the originals.
            ToDivideKeep.Copy( ToDivide );
            DivideByKeep.Copy( DivideBy );

            ulong TestBits = DivideBy.GetD( DivideBy.GetIndex());
            int ShiftBy = FindShiftBy( TestBits );
            ToDivide.ShiftLeft( ShiftBy ); // Multiply the numerator and the denominator
            DivideBy.ShiftLeft( ShiftBy ); // by the same amount.

            ulong MaxValue;
            if( (ToDivide.GetIndex() - 1) > (DivideBy.GetIndex() + TestIndex) )
              {
              MaxValue = ToDivide.GetD( ToDivide.GetIndex());
              }
            else
              {
              MaxValue = ToDivide.GetD( ToDivide.GetIndex()) << 32;
              MaxValue |= ToDivide.GetD( ToDivide.GetIndex() - 1 );
              }

            ulong Denom = DivideBy.GetD( DivideBy.GetIndex());
            if( Denom != 0 )
              MaxValue = MaxValue / Denom;
            else
              MaxValue = 0xFFFFFFFF;

            if( MaxValue > 0xFFFFFFFF )
              MaxValue = 0xFFFFFFFF;

            if( MaxValue == 0 )
              throw( new Exception( "MaxValue is zero at the top in LongDivide3()." ));

            Quotient.SetDigitAndClear( TestIndex, 1 );
            Quotient.SetD( TestIndex, 0 );

            TestForDivide1.Copy( Quotient );
            TestForDivide1.SetD( TestIndex, MaxValue );
            MultiplyTop( TestForDivide1, DivideBy );

            /*
            Test2.Copy( Quotient );
            Test2.SetD( TestIndex, MaxValue );
            Multiply( Test2, DivideBy );
            if( !Test2.IsEqual( TestForDivide1 ))
              throw( new Exception( "In Divide3() !IsEqual( Test2, TestForDivide1 )" ));
            */

            if( TestForDivide1.ParamIsGreaterOrEq( ToDivide ))
              {
              // ToMatchExactCount++;
              // Most of the time (roughly 5 out of every 6 times)
              // this MaxValue estimate is exactly right:
              Quotient.SetD( TestIndex, MaxValue );
              }
            else
              {
              // MaxValue can't be zero here. If it was it would
              // already be low enough before it got here.
              MaxValue--;

              if( MaxValue == 0 )
            throw( new Exception( "After decrement: MaxValue is zero in LongDivide3()." ));

              TestForDivide1.Copy( Quotient );
              TestForDivide1.SetD( TestIndex, MaxValue );
              MultiplyTop( TestForDivide1, DivideBy );

              /*
              Test2.Copy( Quotient );
              Test2.SetD( TestIndex, MaxValue );
              Multiply( Test2, DivideBy );
              if( !Test2.IsEqual( Test1 ))
            throw( new Exception( "Top one. !Test2.IsEqual( Test1 ) in LongDivide3()" ));
              */

              if( TestForDivide1.ParamIsGreaterOrEq( ToDivide ))
            {
            // ToMatchDecCount++;
            Quotient.SetD( TestIndex, MaxValue );
            }
              else
            {
            // TestDivideBits is done as a last resort, but it's rare.
            // But it does at least limit it to a worst case scenario
            // of trying 32 bits, rather than 4 billion or so decrements.

            TestDivideBits( MaxValue,
                        true,
                        TestIndex,
                        ToDivide,
                        DivideBy,
                        Quotient,
                        Remainder );
            }

              // TestGap = MaxValue - LgQuotient.D[TestIndex];
              // if( TestGap > HighestToMatchGap )
            // HighestToMatchGap = TestGap;

              // HighestToMatchGap: 4,294,967,293
              // uint size:         4,294,967,295 uint
              }

            // If it's done.
            if( TestIndex == 0 )
              {
              TestForDivide1.Copy( Quotient );
              Multiply( TestForDivide1, DivideByKeep );
              Remainder.Copy( ToDivideKeep );
              Subtract( Remainder, TestForDivide1 );
              //if( DivideByKeep.ParamIsGreater( Remainder ))
            // throw( new Exception( "Remainder > DivideBy in LongDivide3()." ));

              return;
              }

            // Now do the rest of the digits.
            TestIndex--;
            while( true )
              {
              TestForDivide1.Copy( Quotient );
              // First Multiply() for each digit.
              Multiply( TestForDivide1, DivideBy );
              // if( ToDivide.ParamIsGreater( TestForDivide1 ))
              //   throw( new Exception( "Bug here in LongDivide3()." ));

              Remainder.Copy( ToDivide );
              Subtract( Remainder, TestForDivide1 );
              MaxValue = Remainder.GetD( Remainder.GetIndex()) << 32;

              int CheckIndex = Remainder.GetIndex() - 1;
              if( CheckIndex > 0 )
            MaxValue |= Remainder.GetD( CheckIndex );

              Denom = DivideBy.GetD( DivideBy.GetIndex());
              if( Denom != 0 )
            MaxValue = MaxValue / Denom;
              else
            MaxValue = 0xFFFFFFFF;

              if( MaxValue > 0xFFFFFFFF )
            MaxValue = 0xFFFFFFFF;

              TestForDivide1.Copy( Quotient );
              TestForDivide1.SetD( TestIndex, MaxValue );
              // There's a minimum of two full Multiply() operations per digit.
              Multiply( TestForDivide1, DivideBy );
              if( TestForDivide1.ParamIsGreaterOrEq( ToDivide ))
            {
            // Most of the time this MaxValue estimate is exactly right:
            // ToMatchExactCount++;
            Quotient.SetD( TestIndex, MaxValue );
            }
              else
            {
            MaxValue--;
            TestForDivide1.Copy( Quotient );
            TestForDivide1.SetD( TestIndex, MaxValue );
            Multiply( TestForDivide1, DivideBy );
            if( TestForDivide1.ParamIsGreaterOrEq( ToDivide ))
              {
              // ToMatchDecCount++;
              Quotient.SetD( TestIndex, MaxValue );
              }
            else
              {
              TestDivideBits( MaxValue,
                          false,
                          TestIndex,
                          ToDivide,
                          DivideBy,
                          Quotient,
                          Remainder );

              // TestGap = MaxValue - LgQuotient.D[TestIndex];
              // if( TestGap > HighestToMatchGap )
            // HighestToMatchGap = TestGap;

              }
            }

              if( TestIndex == 0 )
            break;

              TestIndex--;
              }

            TestForDivide1.Copy( Quotient );
            Multiply( TestForDivide1, DivideByKeep );
            Remainder.Copy( ToDivideKeep );
            Subtract( Remainder, TestForDivide1 );

            // if( DivideByKeep.ParamIsGreater( Remainder ))
              // throw( new Exception( "Remainder > DivideBy in LongDivide3()." ));
        }
示例#3
0
        internal void SubtractPositive( Integer Result, Integer ToSub )
        {
            if( ToSub.IsULong() )
              {
              SubtractULong( Result, ToSub.GetAsULong());
              return;
              }

            if( ToSub.GetIndex() > Result.GetIndex() )
              throw( new Exception( "In Subtract() ToSub.Index > Index." ));

            for( int Count = 0; Count <= ToSub.GetIndex(); Count++ )
              SignedD[Count] = (long)Result.GetD( Count ) - (long)ToSub.GetD( Count );

            for( int Count = ToSub.GetIndex() + 1; Count <= Result.GetIndex(); Count++ )
              SignedD[Count] = (long)Result.GetD( Count );

            for( int Count = 0; Count < Result.GetIndex(); Count++ )
              {
              if( SignedD[Count] < 0 )
            {
            SignedD[Count] += (long)0xFFFFFFFF + 1;
            SignedD[Count + 1]--;
            }
              }

            if( SignedD[Result.GetIndex()] < 0 )
              throw( new Exception( "Subtract() SignedD[Index] < 0." ));

            for( int Count = 0; Count <= Result.GetIndex(); Count++ )
              Result.SetD( Count, (ulong)SignedD[Count] );

            for( int Count = Result.GetIndex(); Count >= 0; Count-- )
              {
              if( Result.GetD( Count ) != 0 )
            {
            Result.SetIndex( Count );
            return;
            }
              }

            // If it never found a non-zero digit it would get down to here.
            Result.SetIndex( 0 );
        }
示例#4
0
        internal void SubtractULong( Integer Result, ulong ToSub )
        {
            if( Result.IsULong())
              {
              ulong ResultU = Result.GetAsULong();
              if( ToSub > ResultU )
            throw( new Exception( "SubULong() (IsULong() and (ToSub > Result)." ));

              ResultU = ResultU - ToSub;
              Result.SetD( 0, ResultU & 0xFFFFFFFF );
              Result.SetD( 1, ResultU >> 32 );
              if( Result.GetD( 1 ) == 0 )
            Result.SetIndex( 0 );
              else
            Result.SetIndex( 1 );

              return;
              }

            // If it got this far then Index is at least 2.
            SignedD[0] = (long)Result.GetD( 0 ) - (long)(ToSub & 0xFFFFFFFF);
            SignedD[1] = (long)Result.GetD( 1 ) - (long)(ToSub >> 32);

            if( (SignedD[0] >= 0) && (SignedD[1] >= 0) )
              {
              // No need to reorganize it.
              Result.SetD( 0, (ulong)SignedD[0] );
              Result.SetD( 1, (ulong)SignedD[1] );
              return;
              }

            for( int Count = 2; Count <= Result.GetIndex(); Count++ )
              SignedD[Count] = (long)Result.GetD( Count );

            for( int Count = 0; Count < Result.GetIndex(); Count++ )
              {
              if( SignedD[Count] < 0 )
            {
            SignedD[Count] += (long)0xFFFFFFFF + 1;
            SignedD[Count + 1]--;
            }
              }

            if( SignedD[Result.GetIndex()] < 0 )
              throw( new Exception( "SubULong() SignedD[Index] < 0." ));

            for( int Count = 0; Count <= Result.GetIndex(); Count++ )
              Result.SetD( Count, (ulong)SignedD[Count] );

            for( int Count = Result.GetIndex(); Count >= 0; Count-- )
              {
              if( Result.GetD( Count ) != 0 )
            {
            Result.SetIndex( Count );
            return;
            }
              }

            // If this was zero it wouldn't find a nonzero
            // digit to set the Index to and it would end up down here.
            Result.SetIndex( 0 );
        }
示例#5
0
        internal void SetupGeneralBaseArray( Integer GeneralBase )
        {
            // The input to the accumulator can be twice the bit length of GeneralBase.
            int HowMany = ((GeneralBase.GetIndex() + 1) * 2) + 10; // Plus some extra for carries...
            if( GeneralBaseArray == null )
              {
              GeneralBaseArray = new Integer[HowMany];
              }

            if( GeneralBaseArray.Length < HowMany )
              {
              GeneralBaseArray = new Integer[HowMany];
              }

            Integer Base = new Integer();
            Integer BaseValue = new Integer();
            Base.SetFromULong( 256 ); // 0x100
            IntMath.MultiplyUInt( Base, 256 ); // 0x10000
            IntMath.MultiplyUInt( Base, 256 ); // 0x1000000
            IntMath.MultiplyUInt( Base, 256 ); // 0x100000000 is the base of this number system.

            BaseValue.SetFromULong( 1 );
            for( int Count = 0; Count < HowMany; Count++ )
              {
              if( GeneralBaseArray[Count] == null )
            GeneralBaseArray[Count] = new Integer();

              IntMath.Divide( BaseValue, GeneralBase, Quotient, Remainder );
              GeneralBaseArray[Count].Copy( Remainder );

              // If this ever happened it would be a bug because
              // the point of copying the Remainder in to BaseValue
              // is to keep it down to a reasonable size.
              // And Base here is one bit bigger than a uint.
              if( Base.ParamIsGreater( Quotient ))
            throw( new Exception( "Bug. This never happens: Base.ParamIsGreater( Quotient )" ));

              // Keep it to mod GeneralBase so Divide() doesn't
              // have to do so much work.
              BaseValue.Copy( Remainder );
              IntMath.Multiply( BaseValue, Base );
              }
        }
示例#6
0
        internal void ModularPower( Integer Result, Integer Exponent, Integer GeneralBase )
        {
            // The square and multiply method is in Wikipedia:
            // https://en.wikipedia.org/wiki/Exponentiation_by_squaring
            // x^n = (x^2)^((n - 1)/2) if n is odd.
            // x^n = (x^2)^(n/2)       if n is even.

            if( Result.IsZero())
              return; // With Result still zero.

            if( Result.IsEqual( GeneralBase ))
              {
              // It is congruent to zero % ModN.
              Result.SetToZero();
              return;
              }

            // Result is not zero at this point.
            if( Exponent.IsZero() )
              {
              Result.SetFromULong( 1 );
              return;
              }

            if( GeneralBase.ParamIsGreater( Result ))
              {
              // throw( new Exception( "This is not supposed to be input for RSA plain text." ));
              IntMath.Divide( Result, GeneralBase, Quotient, Remainder );
              Result.Copy( Remainder );
              }

            if( Exponent.IsEqualToULong( 1 ))
              {
              // Result stays the same.
              return;
              }

            // This could also be called ahead of time if the base (the modulus)
            // doesn't change.  Like when your public key doesn't change.
            SetupGeneralBaseArray( GeneralBase );

            XForModPower.Copy( Result );
            ExponentCopy.Copy( Exponent );
            int TestIndex = 0;
            Result.SetFromULong( 1 );
            while( true )
              {
              if( (ExponentCopy.GetD( 0 ) & 1) == 1 ) // If the bottom bit is 1.
            {
            IntMath.Multiply( Result, XForModPower );

            // Modular Reduction:
            AddByGeneralBaseArrays( TempForModPower, Result );
            Result.Copy( TempForModPower );
            }

              ExponentCopy.ShiftRight( 1 ); // Divide by 2.
              if( ExponentCopy.IsZero())
            break;

              // Square it.
              IntMath.Multiply( XForModPower, XForModPower );

              // Modular Reduction:
              AddByGeneralBaseArrays( TempForModPower, XForModPower );
              XForModPower.Copy( TempForModPower );
              }

            // When AddByGeneralBaseArrays() gets called it multiplies a number
            // by a uint sized digit.  So that can make the result one digit bigger
            // than GeneralBase.  Then when they are added up you can get carry
            // bits that can make it a little bigger.
            // If by chance you got a carry bit on _every_ addition that was done
            // in AddByGeneralBaseArrays() then this number could increase in size
            // by 1 bit for each addition that was done.  It would take 32 bits of
            // carrying for HowBig to increase by 1.
            // See HowManyToAdd in AddByGeneralBaseArrays() for why this check is done.
            int HowBig = Result.GetIndex() - GeneralBase.GetIndex();
            if( HowBig > 2 ) // I have not seen this happen yet.
              throw( new Exception( "The difference in index size was more than 2. Diff: " + HowBig.ToString() ));

            // So this Quotient has only one or two 32-bit digits in it.
            // And this Divide() is only called once at the end.  Not in the loop.
            IntMath.Divide( Result, GeneralBase, Quotient, Remainder );
            Result.Copy( Remainder );
        }
示例#7
0
        internal void MultiplyUInt( Integer Result, ulong ToMul )
        {
            try
            {
            if( ToMul == 0 )
              {
              Result.SetToZero();
              return;
              }

            if( ToMul == 1 )
              return;

            for( int Column = 0; Column <= Result.GetIndex(); Column++ )
              M[Column, 0] = ToMul * Result.GetD( Column );

            // Add these up with a carry.
            Result.SetD( 0, M[0, 0] & 0xFFFFFFFF );
            ulong Carry = M[0, 0] >> 32;
            for( int Column = 1; Column <= Result.GetIndex(); Column++ )
              {
              // Using a compile-time check on this constant,
              // this Test value does not overflow:
              // const ulong Test = ((ulong)0xFFFFFFFF * (ulong)(0xFFFFFFFF)) + 0xFFFFFFFF;

              // ulong Total = checked( M[Column, 0] + Carry );
              ulong Total = M[Column, 0] + Carry;
              Result.SetD( Column, Total & 0xFFFFFFFF );
              Carry = Total >> 32;
              }

            if( Carry != 0 )
              {
              Result.IncrementIndex(); // This might throw an exception if it overflows.
              Result.SetD( Result.GetIndex(), Carry );
              }
            }
            catch( Exception Except )
              {
              throw( new Exception( "Exception in MultiplyUInt(): " + Except.Message ));
              }
        }
示例#8
0
        internal void MakeBaseNumbers()
        {
            try
            {
            MakeYBaseToPrimesArray();
            if( Worker.CancellationPending )
              return;

            Integer YTop = new Integer();
            Integer Y = new Integer();
            Integer XSquared = new Integer();
            Integer Test = new Integer();
            YTop.SetToZero();
            uint XSquaredBitLength = 1;

            ExponentVectorNumber ExpNumber = new ExponentVectorNumber( IntMath );

            uint Loops = 0;
            uint BSmoothCount = 0;
            uint BSmoothTestsCount = 0;
            uint IncrementYBy = 0;
            while( true )
              {
              if( Worker.CancellationPending )
            return;

              Loops++;
              if( (Loops & 0xF) == 0 )
            {
            Worker.ReportProgress( 0, " " );
            Worker.ReportProgress( 0, "Loops: " + Loops.ToString( "N0" ));
            Worker.ReportProgress( 0, "BSmoothCount: " + BSmoothCount.ToString( "N0" ));
            Worker.ReportProgress( 0, "BSmoothTestsCount: " + BSmoothTestsCount.ToString( "N0" ));
            if( BSmoothTestsCount != 0 )
              {
              double TestsRatio = (double)BSmoothCount / (double)BSmoothTestsCount;
              Worker.ReportProgress( 0, "TestsRatio: " + TestsRatio.ToString( "N3" ));
              }
            }

              /*
              if( (Loops & 0xFFFFF) == 0 )
            {
            // Use Task Manager to tweak the CPU Utilization if you want
            // it be below 100 percent.
            Thread.Sleep( 1 );
            }
            */

              // About 98 percent of the time it is running IncrementBy().
              IncrementYBy += IncrementConst;
              uint BitLength = IncrementBy();

              const uint SomeOptimumBitLength = 2;
              if( BitLength < SomeOptimumBitLength )
            continue;

              // This BitLength has to do with how many small factors you want
              // in the number.  But it doesn't limit your factor base at all.
              // You can still have any size prime in your factor base (up to
              // IntegerMath.PrimeArrayLength).  Compare the size of
              // YBaseToPrimesArrayLast to IntegerMath.PrimeArrayLength.
              BSmoothTestsCount++;
              YTop.AddULong( IncrementYBy );
              IncrementYBy = 0;
              Y.Copy( ProductSqrRoot );
              Y.Add( YTop );
              XSquared.Copy( Y );
              IntMath.DoSquare( XSquared );
              if( XSquared.ParamIsGreater( Product ))
            throw( new Exception( "Bug. XSquared.ParamIsGreater( Product )." ));

              IntMath.Subtract( XSquared, Product );

              XSquaredBitLength = (uint)(XSquared.GetIndex() * 32);
              uint TopDigit = (uint)XSquared.GetD( XSquared.GetIndex());
              uint TopLength = GetBitLength( TopDigit );
              XSquaredBitLength += TopLength;
              if( XSquaredBitLength == 0 )
            XSquaredBitLength = 1;

              // if( ItIsTheAnswerAlready( XSquared ))  It's too unlikely.
              // QuadResCombinatorics could run in parallel to check for that,
              // and it would be way ahead of this.

              GetOneMainFactor();
              if( OneMainFactor.IsEqual( XSquared ))
            {
            MakeFastExpNumber( ExpNumber );
            }
              else
            {
            if( OneMainFactor.IsZero())
              throw( new Exception( "OneMainFactor.IsZero()." ));

            IntMath.Divide( XSquared, OneMainFactor, Quotient, Remainder );
            ExpNumber.SetFromTraditionalInteger( Quotient );
            ExpNumber.Multiply( ExpOneMainFactor );
            ExpNumber.GetTraditionalInteger( Test );
            if( !Test.IsEqual( XSquared ))
              throw( new Exception( "!Test.IsEqual( XSquared )." ));

            }

              if( ExpNumber.IsBSmooth())
            {
            BSmoothCount++;
            string DelimS = IntMath.ToString10( Y ) + "\t" +
                        ExpNumber.ToDelimString();

            Worker.ReportProgress( 1, DelimS );

            if( (BSmoothCount & 0x3F) == 0 )
              {
              Worker.ReportProgress( 0, " " );
              Worker.ReportProgress( 0, "BitLength: " + BitLength.ToString());
              Worker.ReportProgress( 0, "XSquaredBitLength: " + XSquaredBitLength.ToString());
              Worker.ReportProgress( 0, ExpNumber.ToString() );

              // What should BSmoothLimit be?
              // (Since FactorDictionary.cs will reduce the final factor base.)
              if( BSmoothCount > BSmoothLimit )
            {
            Worker.ReportProgress( 0, "Found enough to make the matrix." );
            Worker.ReportProgress( 0, "BSmoothCount: " + BSmoothCount.ToString( "N0" ));
            Worker.ReportProgress( 0, "BSmoothLimit: " + BSmoothLimit.ToString( "N0" ));
            Worker.ReportProgress( 0, "Seconds: " + StartTime.GetSecondsToNow().ToString( "N1" ));
            double Seconds = StartTime.GetSecondsToNow();
            int Minutes = (int)Seconds / 60;
            int Hours = Minutes / 60;
            Minutes = Minutes % 60;
            Seconds = Seconds % 60;
            string ShowS = "Hours: " + Hours.ToString( "N0" ) +
                   "  Minutes: " + Minutes.ToString( "N0" ) +
                   "  Seconds: " + Seconds.ToString( "N0" );

            Worker.ReportProgress( 0, ShowS );

            return;
            }
              }
            }
              }
            }
            catch( Exception Except )
              {
              throw( new Exception( "Exception in MakeBaseNumbers():\r\n" + Except.Message ));
              }
        }
示例#9
0
        // This is an optimization for multiplying when only the top digit
        // of a number has been set and all of the other digits are zero.
        internal void MultiplyTop( Integer Result, Integer ToMul )
        {
            // try
            // {
            int TotalIndex = Result.GetIndex() + ToMul.GetIndex();
            if( TotalIndex >= Integer.DigitArraySize )
              throw( new Exception( "MultiplyTop() overflow." ));

            // Just like Multiply() except that all the other rows are zero:

            for( int Column = 0; Column <= ToMul.GetIndex(); Column++ )
              M[Column + Result.GetIndex(), Result.GetIndex()] = Result.GetD( Result.GetIndex() ) * ToMul.GetD( Column );

            for( int Column = 0; Column < Result.GetIndex(); Column++ )
              Result.SetD( Column, 0 );

            ulong Carry = 0;
            for( int Column = 0; Column <= ToMul.GetIndex(); Column++ )
              {
              ulong Total = M[Column + Result.GetIndex(), Result.GetIndex()] + Carry;
              Result.SetD( Column + Result.GetIndex(), Total & 0xFFFFFFFF );
              Carry = Total >> 32;
              }

            Result.SetIndex( TotalIndex );
            if( Carry != 0 )
              {
              Result.SetIndex( Result.GetIndex() + 1 );
              if( Result.GetIndex() >= Integer.DigitArraySize )
            throw( new Exception( "MultiplyTop() overflow." ));

              Result.SetD( Result.GetIndex(), Carry );
              }

            /*
            }
            catch( Exception ) // Except )
              {
              // "Bug in MultiplyTop: " + Except.Message
              }
            */
        }
示例#10
0
        // This is another optimization.  This is used when the top digit
        // is 1 and all of the other digits are zero.
        // This is effectively just a shift-left operation.
        internal void MultiplyTopOne( Integer Result, Integer ToMul )
        {
            // try
            // {
            int TotalIndex = Result.GetIndex() + ToMul.GetIndex();
            if( TotalIndex >= Integer.DigitArraySize )
              throw( new Exception( "MultiplyTopOne() overflow." ));

            for( int Column = 0; Column <= ToMul.GetIndex(); Column++ )
              Result.SetD( Column + Result.GetIndex(), ToMul.GetD( Column ));

            for( int Column = 0; Column < Result.GetIndex(); Column++ )
              Result.SetD( Column, 0 );

            // No Carrys need to be done.
            Result.SetIndex( TotalIndex );

            /*
            }
            catch( Exception ) // Except )
              {
              // "Bug in MultiplyTopOne: " + Except.Message
              }
              */
        }
示例#11
0
        // See also: http://en.wikipedia.org/wiki/Karatsuba_algorithm
        internal void Multiply( Integer Result, Integer ToMul )
        {
            // try
            // {

            if( Result.IsZero())
              return;

            if( ToMul.IsULong())
              {
              MultiplyULong( Result, ToMul.GetAsULong());
              SetMultiplySign( Result, ToMul );
              return;
              }

            // It could never get here if ToMul is zero because GetIsULong()
            // would be true for zero.
            // if( ToMul.IsZero())

            int TotalIndex = Result.GetIndex() + ToMul.GetIndex();
            if( TotalIndex >= Integer.DigitArraySize )
              throw( new Exception( "Multiply() overflow." ));

            for( int Row = 0; Row <= ToMul.GetIndex(); Row++ )
              {
              if( ToMul.GetD( Row ) == 0 )
            {
            for( int Column = 0; Column <= Result.GetIndex(); Column++ )
              M[Column + Row, Row] = 0;

            }
              else
            {
            for( int Column = 0; Column <= Result.GetIndex(); Column++ )
              M[Column + Row, Row] = ToMul.GetD( Row ) * Result.GetD( Column );

            }
              }

            // Add the columns up with a carry.
            Result.SetD( 0, M[0, 0] & 0xFFFFFFFF );
            ulong Carry = M[0, 0] >> 32;
            for( int Column = 1; Column <= TotalIndex; Column++ )
              {
              ulong TotalLeft = 0;
              ulong TotalRight = 0;
              for( int Row = 0; Row <= ToMul.GetIndex(); Row++ )
            {
            if( Row > Column )
              break;

            if( Column > (Result.GetIndex() + Row) )
              continue;

            // Split the ulongs into right and left sides
            // so that they don't overflow.
            TotalRight += M[Column, Row] & 0xFFFFFFFF;
            TotalLeft += M[Column, Row] >> 32;
            }

              TotalRight += Carry;
              Result.SetD( Column, TotalRight & 0xFFFFFFFF );
              Carry = TotalRight >> 32;
              Carry += TotalLeft;
              }

            Result.SetIndex( TotalIndex );
            if( Carry != 0 )
              {
              Result.IncrementIndex(); // This can throw an exception if it overflowed the index.
              Result.SetD( Result.GetIndex(), Carry );
              }

            SetMultiplySign( Result, ToMul );
        }
示例#12
0
        private bool MakeAPrime( Integer Result, int SetToIndex, int HowMany )
        {
            try
            {
            int Attempts = 0;
            while( true )
              {
              Attempts++;

              if( Worker.CancellationPending )
            return false;

              // Don't hog the server's resources too much.
              Thread.Sleep( 1 ); // Give up the time slice.  Let other things run.

              int HowManyBytes = (SetToIndex * 4) + 4;
              byte[] RandBytes = MakeRandomBytes( HowManyBytes );
              if( RandBytes == null )
            {
            Worker.ReportProgress( 0, "Error making random bytes in MakeAPrime()." );
            return false;
            }

              if( !Result.MakeRandomOdd( SetToIndex, RandBytes ))
            {
            Worker.ReportProgress( 0, "Error making random number in MakeAPrime()." );
            return false;
            }

              // Make sure that it's the size I think it is.
              if( Result.GetIndex() < SetToIndex )
            throw( new Exception( "Bug. The size of the random prime is not right." ));

              uint TestPrime = IntMath.IsDivisibleBySmallPrime( Result );
              if( 0 != TestPrime)
            continue;

              if( !IntMath.IsFermatPrime( Result, HowMany ))
            {
            Worker.ReportProgress( 0, "Did not pass Fermat test." );
            continue;
            }

              // IsFermatPrime() could take a long time.
              if( Worker.CancellationPending )
            return false;

              Worker.ReportProgress( 0, " " );
              Worker.ReportProgress( 0, "Found a probable prime." );
              Worker.ReportProgress( 0, "Attempts: " + Attempts.ToString() );
              Worker.ReportProgress( 0, " " );
              return true; // With Result.
              }
            }
            catch( Exception Except )
              {
              Worker.ReportProgress( 0, "Error in MakeAPrime()" );
              Worker.ReportProgress( 0, Except.Message );
              return false;
              }
        }
示例#13
0
        internal bool DecryptWithQInverse( Integer EncryptedNumber,
                                     Integer DecryptedNumber,
                                     Integer TestDecryptedNumber,
                                     Integer PubKeyN,
                                     Integer PrivKInverseExponentDP,
                                     Integer PrivKInverseExponentDQ,
                                     Integer PrimeP,
                                     Integer PrimeQ,
                                     BackgroundWorker Worker )
        {
            Worker.ReportProgress( 0, " " );
            Worker.ReportProgress( 0, "Top of DecryptWithQInverse()." );

            // QInv and the dP and dQ numbers are normally already set up before
            // you start your listening socket.
            ECTime DecryptTime = new ECTime();
            DecryptTime.SetToNow();

            // See section 5.1.2 of RFC 2437 for these steps:
            // http://tools.ietf.org/html/rfc2437
            //      2.2 Let m_1 = c^dP mod p.
            //      2.3 Let m_2 = c^dQ mod q.
            //      2.4 Let h = qInv ( m_1 - m_2 ) mod p.
            //      2.5 Let m = m_2 + hq.

            Worker.ReportProgress( 0, "EncryptedNumber: " + IntMath.ToString10( EncryptedNumber ));

            //      2.2 Let m_1 = c^dP mod p.
            TestForDecrypt.Copy( EncryptedNumber );
            IntMathNewForP.ModularPower( TestForDecrypt, PrivKInverseExponentDP, PrimeP, true );
            if( Worker.CancellationPending )
              return false;

            M1ForInverse.Copy( TestForDecrypt );

            //      2.3 Let m_2 = c^dQ mod q.
            TestForDecrypt.Copy( EncryptedNumber );
            IntMathNewForQ.ModularPower( TestForDecrypt, PrivKInverseExponentDQ, PrimeQ, true );

            if( Worker.CancellationPending )
              return false;

            M2ForInverse.Copy( TestForDecrypt );

            //      2.4 Let h = qInv ( m_1 - m_2 ) mod p.

            // How many is optimal to avoid the division?
            int HowManyIsOptimal = (PrimeP.GetIndex() * 3);
            for( int Count = 0; Count < HowManyIsOptimal; Count++ )
              {
              if( M1ForInverse.ParamIsGreater( M2ForInverse ))
            M1ForInverse.Add( PrimeP );
              else
            break;

              }

            if( M1ForInverse.ParamIsGreater( M2ForInverse ))
              {
              M1M2SizeDiff.Copy( M2ForInverse );
              IntMath.Subtract( M1M2SizeDiff, M1ForInverse );
              // Unfortunately this long Divide() has to be done.
              IntMath.Divide( M1M2SizeDiff, PrimeP, Quotient, Remainder );
              Quotient.AddULong( 1 );
              Worker.ReportProgress( 0, "The Quotient for M1M2SizeDiff is: " + IntMath.ToString10( Quotient ));
              IntMath.Multiply( Quotient, PrimeP );
              M1ForInverse.Add( Quotient );
              }

            M1MinusM2.Copy( M1ForInverse );
            IntMath.Subtract( M1MinusM2, M2ForInverse );

            if( M1MinusM2.IsNegative )
              throw( new Exception( "This is a bug. M1MinusM2.IsNegative is true." ));

            if( QInv.IsNegative )
              throw( new Exception( "This is a bug. QInv.IsNegative is true." ));

            HForQInv.Copy( M1MinusM2 );
            IntMath.Multiply( HForQInv, QInv );

            if( HForQInv.IsNegative )
              throw( new Exception( "This is a bug. HForQInv.IsNegative is true." ));

            if( PrimeP.ParamIsGreater( HForQInv ))
              {
              IntMath.Divide( HForQInv, PrimeP, Quotient, Remainder );
              HForQInv.Copy( Remainder );
              }

            //      2.5 Let m = m_2 + hq.
            DecryptedNumber.Copy( HForQInv );
            IntMath.Multiply( DecryptedNumber, PrimeQ );
            DecryptedNumber.Add( M2ForInverse );
            if( !TestDecryptedNumber.IsEqual( DecryptedNumber ))
              throw( new Exception( "!TestDecryptedNumber.IsEqual( DecryptedNumber )." ));

            Worker.ReportProgress( 0, " " );
            Worker.ReportProgress( 0, "DecryptedNumber: " + IntMath.ToString10( DecryptedNumber ));
            Worker.ReportProgress( 0, " " );
            Worker.ReportProgress( 0, "TestDecryptedNumber: " + IntMath.ToString10( TestDecryptedNumber ));
            Worker.ReportProgress( 0, " " );
            Worker.ReportProgress( 0, "Decrypt with QInv time seconds: " + DecryptTime.GetSecondsToNow().ToString( "N2" ));
            Worker.ReportProgress( 0, " " );
            return true;
        }
示例#14
0
        // The ShortDivide() algorithm works like dividing a polynomial which
        // looks like:
        // (ax3 + bx2 + cx + d) / N = (ax3 + bx2 + cx + d) * (1/N)
        // The 1/N distributes over the polynomial:
        // (ax3 * (1/N)) + (bx2 * (1/N)) + (cx * (1/N)) + (d * (1/N))
        // (ax3/N) + (bx2/N) + (cx/N) + (d/N)
        // The algorithm goes from left to right and reduces that polynomial
        // expression.  So it starts with Quotient being a copy of ToDivide
        // and then it reduces Quotient from left to right.
        private bool ShortDivide( Integer ToDivide,
                            Integer DivideBy,
                            Integer Quotient,
                            Integer Remainder )
        {
            Quotient.Copy( ToDivide );
            // DivideBy has an Index of zero:
            ulong DivideByU = DivideBy.GetD( 0 );
            ulong RemainderU = 0;

            // Get the first one set up.
            if( DivideByU > Quotient.GetD( Quotient.GetIndex()) )
              {
              Quotient.SetD( Quotient.GetIndex(), 0 );
              }
            else
              {
              ulong OneDigit = Quotient.GetD( Quotient.GetIndex() );
              Quotient.SetD( Quotient.GetIndex(), OneDigit / DivideByU );
              RemainderU = OneDigit % DivideByU;
              ToDivide.SetD( ToDivide.GetIndex(), RemainderU );
              }

            // Now do the rest.
            for( int Count = Quotient.GetIndex(); Count >= 1; Count-- )
              {
              ulong TwoDigits = ToDivide.GetD( Count );
              TwoDigits <<= 32;
              TwoDigits |= ToDivide.GetD( Count - 1 );
              Quotient.SetD( Count - 1, TwoDigits / DivideByU );
              RemainderU = TwoDigits % DivideByU;
              ToDivide.SetD( Count, 0 );
              ToDivide.SetD( Count - 1, RemainderU ); // What's left to divide.
              }

            // Set the index for the quotient.
            // The quotient would have to be at least 1 here,
            // so it will find where to set the index.
            for( int Count = Quotient.GetIndex(); Count >= 0; Count-- )
              {
              if( Quotient.GetD( Count ) != 0 )
            {
            Quotient.SetIndex( Count );
            break;
            }
              }

            Remainder.SetD( 0, RemainderU );
            Remainder.SetIndex( 0 );
            if( RemainderU == 0 )
              return true;
            else
              return false;
        }
示例#15
0
        internal int MultiplyUIntFromCopy( Integer Result, Integer FromCopy, ulong ToMul )
        {
            int FromCopyIndex = FromCopy.GetIndex();
            // The compiler knows that FromCopyIndex doesn't change here so
            // it can do its range checking on the for-loop before it starts.

            Result.SetIndex( FromCopyIndex );
            for( int Column = 0; Column <= FromCopyIndex; Column++ )
              Scratch[Column] = ToMul * FromCopy.GetD( Column );

            // Add these up with a carry.
            Result.SetD( 0, Scratch[0] & 0xFFFFFFFF );
            ulong Carry = Scratch[0] >> 32;
            for( int Column = 1; Column <= FromCopyIndex; Column++ )
              {
              ulong Total = Scratch[Column] + Carry;
              Result.SetD( Column, Total & 0xFFFFFFFF );
              Carry = Total >> 32;
              }

            if( Carry != 0 )
              {
              Result.IncrementIndex(); // This might throw an exception if it overflows.
              Result.SetD( FromCopyIndex + 1, Carry );
              }

            return Result.GetIndex();
        }
示例#16
0
        internal void DoSquare( Integer ToSquare )
        {
            if( ToSquare.GetIndex() == 0 )
              {
              ToSquare.Square0();
              return;
              }

            if( ToSquare.GetIndex() == 1 )
              {
              ToSquare.Square1();
              return;
              }

            if( ToSquare.GetIndex() == 2 )
              {
              ToSquare.Square2();
              return;
              }

            // Now Index is at least 3:
            int DoubleIndex = ToSquare.GetIndex() << 1;
            if( DoubleIndex >= Integer.DigitArraySize )
              {
              throw( new Exception( "Square() overflowed." ));
              }

            for( int Row = 0; Row <= ToSquare.GetIndex(); Row++ )
              {
              if( ToSquare.GetD( Row ) == 0 )
            {
            for( int Column = 0; Column <= ToSquare.GetIndex(); Column++ )
              M[Column + Row, Row] = 0;

            }
              else
            {
            for( int Column = 0; Column <= ToSquare.GetIndex(); Column++ )
              M[Column + Row, Row] = ToSquare.GetD( Row ) * ToSquare.GetD( Column );

            }
              }

            // Add the columns up with a carry.
            ToSquare.SetD( 0, M[0, 0] & 0xFFFFFFFF );
            ulong Carry = M[0, 0] >> 32;
            for( int Column = 1; Column <= DoubleIndex; Column++ )
              {
              ulong TotalLeft = 0;
              ulong TotalRight = 0;
              for( int Row = 0; Row <= Column; Row++ )
            {
            if( Row > ToSquare.GetIndex() )
              break;

            if( Column > (ToSquare.GetIndex() + Row) )
              continue;

            TotalRight += M[Column, Row] & 0xFFFFFFFF;
            TotalLeft += M[Column, Row] >> 32;
            }

              TotalRight += Carry;
              ToSquare.SetD( Column, TotalRight & 0xFFFFFFFF );
              Carry = TotalRight >> 32;
              Carry += TotalLeft;
              }

            ToSquare.SetIndex( DoubleIndex );
            if( Carry != 0 )
              {
              ToSquare.SetIndex( ToSquare.GetIndex() + 1 );
              if( ToSquare.GetIndex() >= Integer.DigitArraySize )
            throw( new Exception( "Square() overflow." ));

              ToSquare.SetD( ToSquare.GetIndex(), Carry );
              }
        }
示例#17
0
        internal void MultiplyULong( Integer Result, ulong ToMul )
        {
            // Using compile-time checks, this one overflows:
            // const ulong Test = ((ulong)0xFFFFFFFF + 1) * ((ulong)0xFFFFFFFF + 1);
            // This one doesn't:
            // const ulong Test = (ulong)0xFFFFFFFF * ((ulong)0xFFFFFFFF + 1);

            if( Result.IsZero())
              return; // Then the answer is zero, which it already is.

            if( ToMul == 0 )
              {
              Result.SetToZero();
              return;
              }

            ulong B0 = ToMul & 0xFFFFFFFF;
            ulong B1 = ToMul >> 32;

            if( B1 == 0 )
              {
              MultiplyUInt( Result, (uint)B0 );
              return;
              }

            // Since B1 is not zero:
            if( (Result.GetIndex() + 1) >= Integer.DigitArraySize )
              throw( new Exception( "Overflow in MultiplyULong." ));

            for( int Column = 0; Column <= Result.GetIndex(); Column++ )
              {
              M[Column, 0] = B0 * Result.GetD( Column );
              // Column + 1 and Row is 1, so it's just like pen and paper.
              M[Column + 1, 1] = B1 * Result.GetD( Column );
              }

            // Since B1 is not zero, the index is set one higher.
            Result.IncrementIndex(); // Might throw an exception if it goes out of range.

            M[Result.GetIndex(), 0] = 0; // Otherwise it would be undefined
                                 // when it's added up below.

            // Add these up with a carry.
            Result.SetD( 0, M[0, 0] & 0xFFFFFFFF );
            ulong Carry = M[0, 0] >> 32;
            for( int Column = 1; Column <= Result.GetIndex(); Column++ )
              {
              // This does overflow:
              // const ulong Test = ((ulong)0xFFFFFFFF * (ulong)(0xFFFFFFFF))
              //                  + ((ulong)0xFFFFFFFF * (ulong)(0xFFFFFFFF));
              // Split the ulongs into right and left sides
              // so that they don't overflow.
              ulong TotalLeft = 0;
              ulong TotalRight = 0;
              // There's only the two rows for this.
              for( int Row = 0; Row <= 1; Row++ )
            {
            TotalRight += M[Column, Row] & 0xFFFFFFFF;
            TotalLeft += M[Column, Row] >> 32;
            }

              TotalRight += Carry;
              Result.SetD( Column, TotalRight & 0xFFFFFFFF );
              Carry = TotalRight >> 32;
              Carry += TotalLeft;
              }

            if( Carry != 0 )
              {
              Result.IncrementIndex(); // This can throw an exception.
              Result.SetD( Result.GetIndex(), Carry );
              }
        }
示例#18
0
        // This is the standard modular power algorithm that
        // you could find in any reference, but its use of
        // the new modular reduction algorithm is new.
        // The square and multiply method is in Wikipedia:
        // https://en.wikipedia.org/wiki/Exponentiation_by_squaring
        // x^n = (x^2)^((n - 1)/2) if n is odd.
        // x^n = (x^2)^(n/2)       if n is even.
        internal void ModularPower( Integer Result, Integer Exponent, Integer Modulus, bool UsePresetBaseArray )
        {
            if( Result.IsZero())
              return; // With Result still zero.

            if( Result.IsEqual( Modulus ))
              {
              // It is congruent to zero % ModN.
              Result.SetToZero();
              return;
              }

            // Result is not zero at this point.
            if( Exponent.IsZero() )
              {
              Result.SetFromULong( 1 );
              return;
              }

            if( Modulus.ParamIsGreater( Result ))
              {
              // throw( new Exception( "This is not supposed to be input for RSA plain text." ));
              IntMath.Divide( Result, Modulus, Quotient, Remainder );
              Result.Copy( Remainder );
              }

            if( Exponent.IsOne())
              {
              // Result stays the same.
              return;
              }

            if( !UsePresetBaseArray )
              SetupGeneralBaseArray( Modulus );

            XForModPower.Copy( Result );
            ExponentCopy.Copy( Exponent );
            int TestIndex = 0;
            Result.SetFromULong( 1 );
            while( true )
              {
              if( (ExponentCopy.GetD( 0 ) & 1) == 1 ) // If the bottom bit is 1.
            {
            IntMath.Multiply( Result, XForModPower );
            ModularReduction( TempForModPower, Result );
            Result.Copy( TempForModPower );
            }

              ExponentCopy.ShiftRight( 1 ); // Divide by 2.
              if( ExponentCopy.IsZero())
            break;

              // Square it.
              IntMath.Multiply( XForModPower, XForModPower );
              ModularReduction( TempForModPower, XForModPower );
              XForModPower.Copy( TempForModPower );
              }

            // When ModularReduction() gets called it multiplies a base number
            // by a uint sized digit.  So that can make the result one digit bigger
            // than GeneralBase.  Then when they are added up you can get carry
            // bits that can make it a little bigger.
            int HowBig = Result.GetIndex() - Modulus.GetIndex();
            // if( HowBig > 1 )
              // throw( new Exception( "This does happen. Diff: " + HowBig.ToString() ));

            if( HowBig > 2 )
              throw( new Exception( "The never happens. Diff: " + HowBig.ToString() ));

            ModularReduction( TempForModPower, Result );
            Result.Copy( TempForModPower );

            IntMath.Divide( Result, Modulus, Quotient, Remainder );
            Result.Copy( Remainder );

            if( Quotient.GetIndex() > 1 )
              throw( new Exception( "This never happens. The quotient index is never more than 1." ));
        }
示例#19
0
        // This is a variation on ShortDivide that returns the remainder.
        // Also, DivideBy is a ulong.
        internal ulong ShortDivideRem( Integer ToDivideOriginal,
                               ulong DivideByU,
                               Integer Quotient )
        {
            if( ToDivideOriginal.IsULong())
              {
              ulong ToDiv = ToDivideOriginal.GetAsULong();
              ulong Q = ToDiv / DivideByU;
              Quotient.SetFromULong( Q );
              return ToDiv % DivideByU;
              }

            ToDivide.Copy( ToDivideOriginal );
            Quotient.Copy( ToDivide );

            ulong RemainderU = 0;
            if( DivideByU > Quotient.GetD( Quotient.GetIndex() ))
              {
              Quotient.SetD( Quotient.GetIndex(), 0 );
              }
            else
              {
              ulong OneDigit = Quotient.GetD( Quotient.GetIndex() );
              Quotient.SetD( Quotient.GetIndex(), OneDigit / DivideByU );
              RemainderU = OneDigit % DivideByU;
              ToDivide.SetD( ToDivide.GetIndex(), RemainderU );
              }

            for( int Count = Quotient.GetIndex(); Count >= 1; Count-- )
              {
              ulong TwoDigits = ToDivide.GetD( Count );
              TwoDigits <<= 32;
              TwoDigits |= ToDivide.GetD( Count - 1 );

              Quotient.SetD( Count - 1, TwoDigits / DivideByU );
              RemainderU = TwoDigits % DivideByU;

              ToDivide.SetD( Count, 0 );
              ToDivide.SetD( Count - 1, RemainderU );
              }

            for( int Count = Quotient.GetIndex(); Count >= 0; Count-- )
              {
              if( Quotient.GetD( Count ) != 0 )
            {
            Quotient.SetIndex( Count );
            break;
            }
              }

            return RemainderU;
        }
示例#20
0
        // Copyright Eric Chauvin 2015.
        private int ModularReduction( Integer Result, Integer ToReduce )
        {
            try
            {
            if( GeneralBaseArray == null )
              throw( new Exception( "SetupGeneralBaseArray() should have already been called." ));

            Result.SetToZero();

            int HowManyToAdd = ToReduce.GetIndex() + 1;
            if( HowManyToAdd > GeneralBaseArray.Length )
              throw( new Exception( "Bug. The Input number should have been reduced first. HowManyToAdd > GeneralBaseArray.Length" ));

            int BiggestIndex = 0;
            for( int Count = 0; Count < HowManyToAdd; Count++ )
              {
              // The size of the numbers in GeneralBaseArray are
              // all less than the size of GeneralBase.
              // This multiplication by a uint is with a number
              // that is not bigger than GeneralBase.  Compare
              // this with the two full Muliply() calls done on
              // each digit of the quotient in LongDivide3().

              // AccumulateBase is set to a new value here.
              int CheckIndex = IntMath.MultiplyUIntFromCopy( AccumulateBase, GeneralBaseArray[Count], ToReduce.GetD( Count ));

              if( CheckIndex > BiggestIndex )
            BiggestIndex = CheckIndex;

              Result.Add( AccumulateBase );
              }

            return Result.GetIndex();
            }
            catch( Exception Except )
              {
              throw( new Exception( "Exception in ModularReduction(): " + Except.Message ));
              }
        }
示例#21
0
        // This is the Modular Reduction algorithm.  It reduces
        // ToAdd to Result.
        private int AddByGeneralBaseArrays( Integer Result, Integer ToAdd )
        {
            try
            {
            if( GeneralBaseArray == null )
              throw( new Exception( "SetupGeneralBaseArray() should have already been called." ));

            Result.SetToZero();

            // The Index size of ToAdd is usually double the length of the modulus
            // this is reducing it to.  Like if you multiply P and Q to get N, then
            // the ToAdd that comes in here is about the size of N and the GeneralBase
            // is about the size of P.  So the amount of work done here is proportional
            // to P times N.

            int HowManyToAdd = ToAdd.GetIndex() + 1;
            int BiggestIndex = 0;
            for( int Count = 0; Count < HowManyToAdd; Count++ )
              {
              // The size of the numbers in GeneralBaseArray are all less than
              // the size of GeneralBase.
              // This multiplication by a uint is with a number that is not bigger
              // than GeneralBase.  Compare this with the two full Muliply()
              // calls done on each digit of the quotient in LongDivide3().

              // AccumulateArray[Count] is set to a new value here.
              int CheckIndex = IntMath.MultiplyUIntFromCopy( AccumulateArray[Count], GeneralBaseArray[Count], ToAdd.GetD( Count ));
              if( CheckIndex > BiggestIndex )
            BiggestIndex = CheckIndex;

              }

            // Add all of them up at once.
            AddUpAccumulateArray( Result, HowManyToAdd, BiggestIndex );

            return Result.GetIndex();
            }
            catch( Exception Except )
              {
              throw( new Exception( "Exception in AddByGeneralBaseArrays(): " + Except.Message ));
              }
        }