public DataNormalization Create(double[][] outputArray) { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.AddInputField(a = new InputFieldCSV(false, FILENAME.ToString(), 0)); norm.AddInputField(b = new InputFieldCSV(false, FILENAME.ToString(), 1)); norm.AddInputField(c = new InputFieldCSV(false, FILENAME.ToString(), 2)); norm.AddInputField(d = new InputFieldCSV(false, FILENAME.ToString(), 3)); norm.AddInputField(e = new InputFieldCSV(false, FILENAME.ToString(), 4)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(c, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(d, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(e, 0.1, 0.9)); norm.Storage = new NormalizationStorageArray2D(outputArray); return(norm); }
private void Generate() { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddInputField(c = new InputFieldArray2D(false, ARRAY_2D, 2)); norm.AddInputField(d = new InputFieldArray2D(false, ARRAY_2D, 3)); norm.AddInputField(e = new InputFieldArray2D(false, ARRAY_2D, 4)); norm.AddOutputField(new OutputFieldDirect(a)); norm.AddOutputField(new OutputFieldDirect(b)); norm.AddOutputField(new OutputFieldDirect(c)); norm.AddOutputField(new OutputFieldDirect(d)); norm.AddOutputField(new OutputFieldDirect(e)); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.Process(); }
private DataNormalization Create2D(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return norm; }
private DataNormalization Create2D(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return(norm); }
public DataNormalization CreateIndexSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(6, 2); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(new IndexRangeSegregator(0, 3)); return norm; }
private DataNormalization CreateSampleSegregate() { IInputField a, b; var arrayOutput = EngineArray.AllocateDouble2D(6, 2); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(new IndexSampleSegregator(0, 3, 2)); return(norm); }
private DataNormalization Create() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); var dataset = new BasicMLDataSet(ARRAY_2D, null); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldMLDataSet(false, dataset, 0)); norm.AddInputField(b = new InputFieldMLDataSet(false, dataset, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return norm; }
public DataNormalization Create(double[][] arrayOutput) { IInputField a; IInputField b; IInputField c; var target = new NormalizationStorageArray2D(arrayOutput); var group = new MultiplicativeGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldMultiplicative(group, a)); norm.AddOutputField(new OutputFieldMultiplicative(group, b)); norm.AddOutputField(new OutputFieldMultiplicative(group, c)); return norm; }
private DataNormalization Create() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); var dataset = new BasicMLDataSet(ARRAY_2D, null); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldMLDataSet(false, dataset, 0)); norm.AddInputField(b = new InputFieldMLDataSet(false, dataset, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return(norm); }
public DataNormalization Create(double[][] arrayOutput) { IInputField a; IInputField b; IInputField c; var target = new NormalizationStorageArray2D(arrayOutput); var group = new MultiplicativeGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldMultiplicative(group, a)); norm.AddOutputField(new OutputFieldMultiplicative(group, b)); norm.AddOutputField(new OutputFieldMultiplicative(group, c)); return(norm); }
public DataNormalization Create() { IInputField a; IInputField b; IInputField c; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 4); var target = new NormalizationStorageArray2D(arrayOutput); var group = new ZAxisGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldZAxis(group, a)); norm.AddOutputField(new OutputFieldZAxis(group, b)); norm.AddOutputField(new OutputFieldZAxis(group, c)); norm.AddOutputField(new OutputFieldZAxisSynthetic(group)); return norm; }
private DataNormalization Create(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); OutputFieldEncode a1; OutputFieldEncode b1; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(a1 = new OutputFieldEncode(a)); norm.AddOutputField(b1 = new OutputFieldEncode(b)); a1.AddRange(1.0, 2.0, 0.1); b1.AddRange(0, 100, 0.2); return norm; }
public void BuildOutputOneOf(DataNormalization norm, IInputField coverType) { var outType = new OutputOneOf(); outType.AddItem(coverType, 1); outType.AddItem(coverType, 2); outType.AddItem(coverType, 3); outType.AddItem(coverType, 4); outType.AddItem(coverType, 5); outType.AddItem(coverType, 6); outType.AddItem(coverType, 7); norm.AddOutputField(outType, true); }
private DataNormalization Create(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); OutputFieldEncode a1; OutputFieldEncode b1; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(a1 = new OutputFieldEncode(a)); norm.AddOutputField(b1 = new OutputFieldEncode(b)); a1.AddRange(1.0, 2.0, 0.1); b1.AddRange(0, 100, 0.2); return(norm); }
private DataNormalization CreateRangeSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(1, 2); RangeSegregator s; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(s = new RangeSegregator(a, false)); s.AddRange(2, 2, true); return(norm); }
public DataNormalization Create() { IInputField a; IInputField b; IInputField c; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 4); var target = new NormalizationStorageArray2D(arrayOutput); var group = new ZAxisGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldZAxis(group, a)); norm.AddOutputField(new OutputFieldZAxis(group, b)); norm.AddOutputField(new OutputFieldZAxis(group, c)); norm.AddOutputField(new OutputFieldZAxisSynthetic(group)); return(norm); }
public DataNormalization Create(string filename, double[][] outputArray) { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(filename.ToString()); norm.AddInputField(a = new InputFieldCSV(false, filename.ToString(), 0)); norm.AddInputField(b = new InputFieldCSV(false, filename.ToString(), 1)); norm.AddInputField(c = new InputFieldCSV(false, filename.ToString(), 2)); norm.AddInputField(d = new InputFieldCSV(false, filename.ToString(), 3)); norm.AddInputField(e = new InputFieldCSV(false, filename.ToString(), 4)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(c, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(d, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(e, 0.1, 0.9)); norm.Storage = new NormalizationStorageArray2D(outputArray); return norm; }
public void Copy(FileInfo source, FileInfo target, int start, int stop, int size) { var inputField = new IInputField[55]; var norm = new DataNormalization {Report = this, Storage = new NormalizationStorageCSV(target.ToString())}; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } // load only the part we actually want, i.e. training or eval var segregator2 = new IndexSampleSegregator(start, stop, size); norm.AddSegregator(segregator2); norm.Process(); }
private DataNormalization CreateRangeSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(1, 2); RangeSegregator s; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(s = new RangeSegregator(a, false)); s.AddRange(2, 2, true); return norm; }
public DataNormalization Step3(bool useOneOf) { Console.WriteLine(@"Step 3: Normalize training data"); IInputField inputElevation; IInputField inputAspect; IInputField inputSlope; IInputField hWater; IInputField vWater; IInputField roadway; IInputField shade9; IInputField shade12; IInputField shade3; IInputField firepoint; var wilderness = new IInputField[4]; var soilType = new IInputField[40]; IInputField coverType; var norm = new DataNormalization { Report = this, Storage = new NormalizationStorageCSV(_config.NormalizedDataFile.ToString()) }; norm.AddInputField(inputElevation = new InputFieldCSV(true, _config.BalanceFile.ToString(), 0)); norm.AddInputField(inputAspect = new InputFieldCSV(true, _config.BalanceFile.ToString(), 1)); norm.AddInputField(inputSlope = new InputFieldCSV(true, _config.BalanceFile.ToString(), 2)); norm.AddInputField(hWater = new InputFieldCSV(true, _config.BalanceFile.ToString(), 3)); norm.AddInputField(vWater = new InputFieldCSV(true, _config.BalanceFile.ToString(), 4)); norm.AddInputField(roadway = new InputFieldCSV(true, _config.BalanceFile.ToString(), 5)); norm.AddInputField(shade9 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 6)); norm.AddInputField(shade12 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 7)); norm.AddInputField(shade3 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 8)); norm.AddInputField(firepoint = new InputFieldCSV(true, _config.BalanceFile.ToString(), 9)); for (int i = 0; i < 4; i++) { norm.AddInputField(wilderness[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 10 + i)); } for (int i = 0; i < 40; i++) { norm.AddInputField(soilType[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 14 + i)); } norm.AddInputField(coverType = new InputFieldCSV(false, _config.BalanceFile.ToString(), 54)); norm.AddOutputField(new OutputFieldRangeMapped(inputElevation)); norm.AddOutputField(new OutputFieldRangeMapped(inputAspect)); norm.AddOutputField(new OutputFieldRangeMapped(inputSlope)); norm.AddOutputField(new OutputFieldRangeMapped(hWater)); norm.AddOutputField(new OutputFieldRangeMapped(vWater)); norm.AddOutputField(new OutputFieldRangeMapped(roadway)); norm.AddOutputField(new OutputFieldRangeMapped(shade9)); norm.AddOutputField(new OutputFieldRangeMapped(shade12)); norm.AddOutputField(new OutputFieldRangeMapped(shade3)); norm.AddOutputField(new OutputFieldRangeMapped(firepoint)); for (int i = 0; i < 40; i++) { norm.AddOutputField(new OutputFieldDirect(soilType[i])); } if (useOneOf) BuildOutputOneOf(norm, coverType); else BuildOutputEquilateral(norm, coverType); norm.Process(); return norm; }
public void Narrow(FileInfo source, FileInfo target, int field, int count) { var inputField = new IInputField[55]; var norm = new DataNormalization {Report = this, Storage = new NormalizationStorageCSV(target.ToString())}; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } var segregator = new IntegerBalanceSegregator(inputField[field], count); norm.AddSegregator(segregator); norm.Process(); Console.WriteLine(@"Samples per tree type:"); Console.WriteLine(segregator.DumpCounts()); }