Inheritance: BasicTraining
示例#1
0
        public void TestPersistEG()
        {
            IMLDataSet trainingSet = XOR.CreateXORDataSet();
            RBFNetwork network = new RBFNetwork(2, 4, 1, RBFEnum.Gaussian);

            SVDTraining training = new SVDTraining(network, trainingSet);
            training.Iteration();
            XOR.VerifyXOR(network, 0.1);

            EncogDirectoryPersistence.SaveObject(EG_FILENAME, network);
            RBFNetwork network2 = (RBFNetwork)EncogDirectoryPersistence.LoadObject(EG_FILENAME);

            XOR.VerifyXOR(network2, 0.1);
        }
示例#2
0
        public void Execute(IExampleInterface app)
        {
            //Specify the number of dimensions and the number of neurons per dimension
            const int dimensions = 2;
            const int numNeuronsPerDimension = 7;

            //Set the standard RBF neuron width. 
            //Literature seems to suggest this is a good default value.
            const double volumeNeuronWidth = 2.0/numNeuronsPerDimension;

            //RBF can struggle when it comes to flats at the edge of the sample space.
            //We have added the ability to include wider neurons on the sample space boundary which greatly
            //improves fitting to flats
            const bool includeEdgeRBFs = true;

            #region Setup

            //General setup is the same as before
            var pattern = new RadialBasisPattern();
            pattern.InputNeurons = dimensions;
            pattern.OutputNeurons = 1;

            //Total number of neurons required.
            //Total number of Edges is calculated possibly for future use but not used any further here
            int numNeurons = (int) Math.Pow(numNeuronsPerDimension, dimensions);
           // int numEdges = (int) (dimensions*Math.Pow(2, dimensions - 1));

            pattern.AddHiddenLayer(numNeurons);

            var network = (RBFNetwork) pattern.Generate();
            //RadialBasisFunctionLayer rbfLayer = (RadialBasisFunctionLayer)network.GetLayer(RadialBasisPattern.RBF_LAYER);


            //Position the multidimensional RBF neurons, with equal spacing, within the provided sample space from 0 to 1.
            //rbfLayer.SetRBFCentersAndWidthsEqualSpacing(0, 1, RBFEnum.Gaussian, dimensions, volumeNeuronWidth, includeEdgeRBFs);
            network.SetRBFCentersAndWidthsEqualSpacing(0, 1, RBFEnum.Gaussian, volumeNeuronWidth, includeEdgeRBFs);

            #endregion

            //Create some training data that can not easily be represented by gaussians
            //There are other training examples for both 1D and 2D
            //Degenerate training data only provides outputs as 1 or 0 (averaging over all outputs for a given set of inputs would produce something approaching the smooth training data).
            //Smooth training data provides true values for the provided input dimensions.
            Create2DSmoothTainingDataGit();

            //Create the training set and train.
            var trainingSet = new BasicMLDataSet(INPUT, IDEAL);
            var train = new SVDTraining(network, trainingSet);

            //SVD is a single step solve
            int epoch = 1;
            do
            {
                train.Iteration();
                Console.WriteLine(@"Epoch #" + epoch + @" Error:" + train.Error);
                epoch++;
            } while ((epoch < 1) && (train.Error > 0.001));

            // test the neural network
            Console.WriteLine(@"Neural Network Results:");

            //Create a testing array which may be to a higher resolution than the original training data
            Set2DTestingArrays(100);
            trainingSet = new BasicNeuralDataSet(INPUT, IDEAL);

            //Write out the results data
            using (var sw = new StreamWriter("results.csv", false))
            {
                foreach (IMLDataPair pair in trainingSet)
                {
                    var output = network.Compute(pair.Input);
                    //1D//sw.WriteLine(InverseScale(pair.Input[0]) + ", " + Chop(InverseScale(output[0])));// + ", " + pair.Ideal[0]);
                    sw.WriteLine(InverseScale(pair.Input[0]) + ", " + InverseScale(pair.Input[1]) + ", " +
                                 Chop(InverseScale(output[0])));
                        // + ", " + pair.Ideal[0]);// + ",ideal=" + pair.Ideal[0]);
                    //3D//sw.WriteLine(InverseScale(pair.Input[0]) + ", " + InverseScale(pair.Input[1]) + ", " + InverseScale(pair.Input[2]) + ", " + Chop(InverseScale(output[0])));// + ", " + pair.Ideal[0]);// + ",ideal=" + pair.Ideal[0]);
                    //Console.WriteLine(pair.Input[0] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]);
                }
            }

            Console.WriteLine(@"\nFit output saved to results.csv");
            Console.WriteLine(@"\nComplete - Please press the 'any' key to close.");
            Console.ReadKey();
        }