/// <summary> /// Create an initial random population. /// </summary> public void Reset() { // create the genome factory if (IsHyperNEAT) { CODEC = new HyperNEATCODEC(); GenomeFactory = new FactorHyperNEATGenome(); } else { CODEC = new NEATCODEC(); GenomeFactory = new FactorNEATGenome(); } // create the new genomes Species.Clear(); // reset counters GeneIdGenerate.CurrentID = 1; InnovationIDGenerate.CurrentID = 1; EncogRandom rnd = RandomNumberFactory.Factor(); // create one default species BasicSpecies defaultSpecies = new BasicSpecies(); defaultSpecies.Population = this; // create the initial population for (int i = 0; i < PopulationSize; i++) { NEATGenome genome = GenomeFactory.Factor(rnd, this, InputCount, OutputCount, InitialConnectionDensity); defaultSpecies.Add(genome); } defaultSpecies.Leader = defaultSpecies.Members[0]; Species.Add(defaultSpecies); // create initial innovations Innovations = new NEATInnovationList(this); }
/// <summary> /// Create an initial random population. /// </summary> public void Reset() { // create the genome factory if (IsHyperNEAT) { CODEC = new HyperNEATCODEC(); GenomeFactory = new FactorHyperNEATGenome(); } else { CODEC = new NEATCODEC(); GenomeFactory = new FactorNEATGenome(); } // create the new genomes Species.Clear(); // reset counters GeneIdGenerate.CurrentID = 1; InnovationIDGenerate.CurrentID = 1; EncogRandom rnd = RandomNumberFactory.Factor(); // create one default species BasicSpecies defaultSpecies = new BasicSpecies(); defaultSpecies.Population = this; // create the initial population for (int i = 0; i < PopulationSize; i++) { NEATGenome genome = GenomeFactory.Factor(rnd, this , InputCount, OutputCount, InitialConnectionDensity); defaultSpecies.Add(genome); } defaultSpecies.Leader = defaultSpecies.Members[0]; Species.Add(defaultSpecies); // create initial innovations Innovations = new NEATInnovationList(this); }
/// <inheritdoc/> public IMLMethod Decode(NEATPopulation pop, Substrate.Substrate substrate, IGenome genome) { // obtain the CPPN NEATCODEC neatCodec = new NEATCODEC(); NEATNetwork cppn = (NEATNetwork)neatCodec.Decode(genome); List<NEATLink> linkList = new List<NEATLink>(); IActivationFunction[] afs = new IActivationFunction[substrate.NodeCount]; IActivationFunction af = new ActivationSteepenedSigmoid(); // all activation functions are the same for (int i = 0; i < afs.Length; i++) { afs[i] = af; } double c = this.MaxWeight / (1.0 - this.MinWeight); BasicMLData input = new BasicMLData(cppn.InputCount); // First create all of the non-bias links. foreach (SubstrateLink link in substrate.Links) { SubstrateNode source = link.Source; SubstrateNode target = link.Target; int index = 0; foreach (double d in source.Location) { input.Data[index++] = d; } foreach (double d in target.Location) { input.Data[index++] = d; } IMLData output = cppn.Compute(input); double weight = output[0]; if (Math.Abs(weight) > this.MinWeight) { weight = (Math.Abs(weight) - this.MinWeight) * c * Math.Sign(weight); linkList.Add(new NEATLink(source.ID, target.ID, weight)); } } // now create biased links input.Clear(); int d2 = substrate.Dimensions; IList<SubstrateNode> biasedNodes = substrate.GetBiasedNodes(); foreach (SubstrateNode target in biasedNodes) { for (int i = 0; i < d2; i++) { input.Data[d2 + i] = target.Location[i]; } IMLData output = cppn.Compute(input); double biasWeight = output[1]; if (Math.Abs(biasWeight) > this.MinWeight) { biasWeight = (Math.Abs(biasWeight) - this.MinWeight) * c * Math.Sign(biasWeight); linkList.Add(new NEATLink(0, target.ID, biasWeight)); } } // check for invalid neural network if (linkList.Count == 0) { return null; } linkList.Sort(); NEATNetwork network = new NEATNetwork(substrate.InputCount, substrate.OutputCount, linkList, afs); network.ActivationCycles = substrate.ActivationCycles; return network; }