static void Main(string[] args) { Image<Gray, Byte>[] trainingImages = new Image<Gray, Byte>[2]; trainingImages[0] = new Image<Gray, byte>("C:\\Image\\Romy.jpg"); trainingImages[1] = new Image<Gray, byte>("C:\\Image\\Stevie.jpg"); int[] labels = new int[] { 0 , 1 }; MCvTermCriteria termCrit = new MCvTermCriteria(16, 0.001); EigenFaceRecognizer recognizer = new EigenFaceRecognizer(0,0.2); Image<Gray, Byte> testImage = new Image<Gray, Byte>("C:\\Image\\Stevie.jpg"); recognizer.Train(trainingImages,labels); EigenFaceRecognizer.PredictionResult result = recognizer.Predict(testImage); Console.WriteLine(result.Label); Console.WriteLine(result.Label); Console.ReadKey(); }
/// <summary> /// Trains recognizer on fetched face-label pairs and saves the trained data to recognition variables /// </summary> public void TrainRecognizer() { recog = new EigenFaceRecognizer(); recog.Train<Gray, byte>(imgs.ToArray(),ints); MessageBox.Show("aww yes"); recog.Save("trainingset/test.frl"); MessageBox.Show("tuwid na daan o"); }
//0: Default, 1:to Accuracy 2: Middium, 3: Imprecise, 4:Ambiguous //tmpNumComponentsFisher. If you leave this at the default (0), set it to a value less than 0, or greater than the number of your training inputs, it will be set to the correct number (your training inputs - 1) automatically public void estimateParametersFisher(Image<Gray, Byte> imagesInput, int accuracy) { int tmpNumComponentsFisher; double tmpThresholdFisher; FaceRecognizer faceRecognition; for (tmpThresholdFisher = 1000; tmpThresholdFisher < 10000; tmpThresholdFisher += 100) { for (tmpNumComponentsFisher = 50; tmpNumComponentsFisher < 100; tmpNumComponentsFisher += 10) { faceRecognition = new EigenFaceRecognizer(tmpNumComponentsFisher, tmpThresholdFisher); GenericRepository<DistanceResult> distanceResultRepo = unitOfWork.GetRepoInstance<DistanceResult>(); int lengthArrays = distanceResultRepo.GetAllRecords().Count(); imagesDB = new Image<Gray, Byte>[lengthArrays]; labels = new int[lengthArrays]; int i = 0; foreach (DistanceResult di in distanceResultRepo.GetAllRecords()) { //This is to recalculate the faceRecognition and save it, but I think is not necesari declare imageDB and labels as global imagesDB[i] = new Image<Gray, Byte>(pathImg + @"\" + di.photoName + ".Jpeg"); labels[i] = di.employeeId; i++; } faceRecognition.Train(imagesDB, labels); //faceRecognition.Load(pathImg + @"\" + "TrainingSet"); FaceRecognizer.PredictionResult ER = faceRecognition.Predict(imagesInput); if (ER.Label != -1) { if (accuracy == 1) { numComponentsEigen = tmpNumComponentsFisher; thresholdEigen = tmpThresholdFisher; return; } else if (accuracy == 2) { numComponentsEigen = tmpNumComponentsFisher; thresholdEigen = tmpThresholdFisher + 300; return; } else if (accuracy == 3) { numComponentsEigen = tmpNumComponentsFisher; thresholdEigen = tmpThresholdFisher + 600; return; } else if (accuracy == 4) { numComponentsEigen = tmpNumComponentsFisher; thresholdEigen = tmpThresholdFisher + 900; return; } else if (accuracy > 4) { thresholdEigen = Double.PositiveInfinity; } else return; } faceRecognition.Dispose(); } } }
private void button_Click(object sender, RoutedEventArgs e) { OpenFileDialog openFileDialog = new OpenFileDialog(); openFileDialog.ShowDialog(); var filePath = openFileDialog.FileName; Image<Bgr, Byte> image = new Image<Bgr, byte>(filePath); //Read the files as an 8-bit Bgr image List<System.Drawing.Rectangle> faces = new List<System.Drawing.Rectangle>(); List<System.Drawing.Rectangle> eyes = new List<System.Drawing.Rectangle>(); Detect(image, "haarcascade_frontalface_default.xml", "haarcascade_eye.xml", faces, eyes); foreach (System.Drawing.Rectangle face in faces) image.Draw(face, new Bgr(System.Drawing.Color.Red), 2); foreach (System.Drawing.Rectangle eye in eyes) image.Draw(eye, new Bgr(System.Drawing.Color.Blue), 2); ImageViewer.Show(image); File.WriteAllBytes("test.jpg", image.ToJpegData()); Image<Gray, Byte> smileImage = new Image<Gray, byte>("happy.jpg"); //Read the files as an 8-bit Bgr image Image<Gray, Byte> sadImage = new Image<Gray, byte>("sad.jpg"); //Read the files as an 8-bit Bgr image List<Image<Gray, Byte>> trainingList = new List<Image<Gray, byte>>(); trainingList.Add(smileImage); trainingList.Add(sadImage); List<string> labelList = new List<string>(); labelList.Add("happy"); labelList.Add("sad"); // labelList.Add(2); MCvTermCriteria termCrit = new MCvTermCriteria(10, 0.001); //Eigen face recognizer EigenObjectRecognizer recognizer = new EigenObjectRecognizer( trainingList.ToArray(), labelList.ToArray(), 5000, ref termCrit); Image<Gray, Byte> inputImage = new Image<Gray, byte>(filePath); //Read the files as an 8-bit Bgr image var resizedImage = inputImage.Resize(smileImage.Width, smileImage.Height, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); var name = recognizer.Recognize(resizedImage).Label; List<int> temp = new List<int>(); temp.Add(1); temp.Add(2); EigenFaceRecognizer recogizer2 = new EigenFaceRecognizer(80, double.PositiveInfinity); recogizer2.Train(trainingList.ToArray(), temp.ToArray()); var dd = recogizer2.Predict(resizedImage); ImageViewer.Show(resizedImage); }