示例#1
0
        /// <summary>
        /// Get the default Decision tree training parameters
        /// </summary>
        /// <returns>The default Decision tree training parameters</returns>
        public static MCvBoostParams GetDefaultParameter()
        {
            IntPtr         ptr = MlInvoke.CvBoostParamsCreate();
            MCvBoostParams p   = (MCvBoostParams)Marshal.PtrToStructure(ptr, typeof(MCvBoostParams));

            MlInvoke.CvBoostParamsRelease(ref ptr);
            return(p);
        }
示例#2
0
 /// <summary>
 /// Train the boost tree using the specific traning data
 /// </summary>
 /// <param name="trainData">The training data. A 32-bit floating-point, single-channel matrix, one vector per row</param>
 /// <param name="tflag">data layout type</param>
 /// <param name="responses">A floating-point matrix of the corresponding output vectors, one vector per row. </param>
 /// <param name="varIdx">Can be null if not needed. When specified, identifies variables (features) of interest. It is a Matrix&gt;int&lt; of nx1</param>
 /// <param name="sampleIdx">Can be null if not needed. When specified, identifies samples of interest. It is a Matrix&gt;int&lt; of nx1</param>
 /// <param name="varType">The types of input variables</param>
 /// <param name="missingMask">Can be null if not needed. When specified, it is an 8-bit matrix of the same size as <paramref name="trainData"/>, is used to mark the missed values (non-zero elements of the mask)</param>
 /// <param name="param">The parameters for training the boost tree</param>
 /// <param name="update">specifies whether the classifier needs to be updated (i.e. the new weak tree classifiers added to the existing ensemble), or the classifier needs to be rebuilt from scratch</param>
 /// <returns></returns>
 public bool Train(
     Matrix<float> trainData,
     MlEnum.DATA_LAYOUT_TYPE tflag,
     Matrix<float> responses,
     Matrix<Byte> varIdx,
     Matrix<Byte> sampleIdx,
     Matrix<Byte> varType,
     Matrix<Byte> missingMask,
     MCvBoostParams param,
     bool update)
 {
     return MlInvoke.CvBoostTrain(
     _ptr,
     trainData.Ptr,
     tflag,
     responses.Ptr,
     varIdx == null ? IntPtr.Zero : varIdx.Ptr,
     sampleIdx == null ? IntPtr.Zero : sampleIdx.Ptr,
     varType == null ? IntPtr.Zero : varType.Ptr,
     missingMask == null ? IntPtr.Zero : missingMask.Ptr,
     param,
     update);
 }
示例#3
0
 public static extern bool CvBoostTrain(
     IntPtr model,
     IntPtr trainData,
     MlEnum.DATA_LAYOUT_TYPE tFlag,
     IntPtr responses,
     IntPtr varIdx,
     IntPtr sampleIdx,
     IntPtr varType,
     IntPtr missingMask,
     MCvBoostParams param,
     [MarshalAs(UnmanagedType.I1)]
     bool update);