示例#1
0
        // Bisection Algorithm for Black Scholes Implied Volatility
        public double BisecBSIV(string PutCall, double S, double K, double rf, double q, double T, double a, double b, double MktPrice, double Tol, int MaxIter)
        {
            BlackScholesPrice BS       = new BlackScholesPrice();
            double            lowCdif  = MktPrice - BS.BlackScholes(S, K, T, rf, q, a, PutCall);
            double            highCdif = MktPrice - BS.BlackScholes(S, K, T, rf, q, b, PutCall);
            double            BSIV     = 0.0;
            double            midP;

            if (lowCdif * highCdif > 0.0)
            {
                BSIV = -1.0;
            }
            else
            {
                for (int x = 0; x <= MaxIter; x++)
                {
                    midP = (a + b) / 2.0;
                    double midCdif = MktPrice - BS.BlackScholes(S, K, T, rf, q, midP, PutCall);
                    if (Math.Abs(midCdif) < Tol)
                    {
                        break;
                    }
                    else
                    {
                        if (midCdif > 0.0)
                        {
                            a = midP;
                        }
                        else
                        {
                            b = midP;
                        }
                    }
                    BSIV = midP;
                }
            }
            return(BSIV);
        }
示例#2
0
        static void Main(string[] args)
        {
            // Classes
            BisectionAlgo     BA = new BisectionAlgo();
            BlackScholesPrice BS = new BlackScholesPrice();
            HestonPrice       HP = new HestonPrice();
            ElicesAlgo        EA = new ElicesAlgo();
            NelderMeadAlgo    NM = new NelderMeadAlgo();
            ObjectiveFunction OF = new ObjectiveFunction();

            // 32-point Gauss-Laguerre Abscissas and weights
            double[] X = new Double[32];
            double[] W = new Double[32];
            using (TextReader reader = File.OpenText("../../GaussLaguerre32.txt"))
            {
                for (int k = 0; k <= 31; k++)
                {
                    string   text = reader.ReadLine();
                    string[] bits = text.Split(' ');
                    X[k] = double.Parse(bits[0]);
                    W[k] = double.Parse(bits[1]);
                }
            }

            // Bounds on the parameter estimates
            // kappa theta sigma v0 rho
            double e = 1.0e-2;

            double[] lb = new double[5] {
                e, e, e, -0.99, e
            };
            double[] ub = new double[5] {
                10.0, 3.0, 10.0, 0.99, 3.0
            };

            // Read in SP500 implied volatilities
            const int NT = 4;
            const int NK = 13;

            double[][] MktIV = new double[NT][];
            MktIV[0] = new double[NK] {
                0.1962, 0.1910, 0.1860, 0.1810, 0.1761, 0.1718, 0.1671, 0.1644, 0.1645, 0.1661, 0.1701, 0.1755, 0.1796
            };
            MktIV[1] = new double[NK] {
                0.1947, 0.1905, 0.1861, 0.1812, 0.1774, 0.1743, 0.1706, 0.1671, 0.1641, 0.1625, 0.1602, 0.1610, 0.1657
            };
            MktIV[2] = new double[NK] {
                0.2019, 0.1980, 0.1943, 0.1907, 0.1871, 0.1842, 0.1813, 0.1783, 0.1760, 0.1743, 0.1726, 0.1716, 0.1724
            };
            MktIV[3] = new double[NK] {
                0.2115, 0.2082, 0.2057, 0.2021, 0.2000, 0.1974, 0.1950, 0.1927, 0.1899, 0.1884, 0.1862, 0.1846, 0.1842
            };
            double[] K = new double[NK] {
                124.0, 125.0, 126.0, 127.0, 128.0, 129.0, 130.0, 131.0, 132.0, 133.0, 134.0, 135.0, 136.0,
            };
            double[] T = new double[NT] {
                37.0 / 365.0, 72.0 / 365.0, 135.0 / 365.0, 226.0 / 365.0
            };

            // PutCall identifier
            string PutCall = "P";

            // Maturity increments
            double[] tau = new double[NT];
            tau[0] = T[0];
            for (int t = 1; t <= NT - 1; t++)
            {
                tau[t] = T[t] - T[t - 1];
            }

            // Option settings
            OPSet opsettings;

            opsettings.S    = 129.14;
            opsettings.r    = 0.0010;
            opsettings.q    = 0.0068;
            opsettings.trap = 1;

            // Obtain the market prices for Elices, jagged array, and Heston (two dimensional array)
            double[][] MktPrice = new double[4][];
            double[,] MktPriceH = new double[NT, NK];
            double[,] MktIVH    = new double[NT, NK];
            for (int t = 0; t <= NT - 1; t++)
            {
                MktPrice[t] = new double[13];
                for (int k = 0; k <= NK - 1; k++)
                {
                    MktPrice[t][k]  = BS.BlackScholes(opsettings.S, K[k], T[t], opsettings.r, opsettings.q, MktIV[t][k], PutCall);
                    MktPriceH[t, k] = MktPrice[t][k];
                    MktIVH[t, k]    = MktIV[t][k];
                }
            }

            // Settings for the Elices objective function
            OFSetE ofsetE = new OFSetE();

            ofsetE.opsettings   = opsettings;
            ofsetE.X            = X;
            ofsetE.W            = W;
            ofsetE.LossFunction = 1;
            ofsetE.lb           = lb;
            ofsetE.ub           = ub;

            // Elices Settings for the Market data
            MktData MktData = new MktData();

            MktData.K       = K;
            MktData.PutCall = PutCall;
            ofsetE.data     = MktData;

            // Settings for the Heston objective function
            OFSetH ofsetH = new OFSetH();

            ofsetH.opsettings   = opsettings;
            ofsetH.X            = X;
            ofsetH.W            = W;
            ofsetH.LossFunction = ofsetE.LossFunction;
            ofsetH.lb           = ofsetE.lb;
            ofsetH.ub           = ofsetE.ub;
            ofsetH.MktPrice     = MktPriceH;
            ofsetH.MktIV        = MktIVH;
            ofsetH.K            = K;
            ofsetH.T            = T;
            ofsetH.PutCall      = PutCall;

            // Parameter initial values
            double kappaS = 2.00;
            double thetaS = 0.10;
            double sigmaS = 1.20;
            double v0S    = 0.03;
            double rhoS   = -0.80;

            // Heston and Elices starting values (vertices) in vector form.  Add random increment about each starting value
            double[,] startH = new double[5, 6];
            double[,] startE = new double[4, 5];
            for (int j = 0; j <= 5; j++)
            {
                startH[0, j] = kappaS + BA.RandomNum(-0.05, 0.05) * kappaS;
                startH[1, j] = thetaS + BA.RandomNum(-0.05, 0.05) * thetaS;
                startH[2, j] = sigmaS + BA.RandomNum(-0.05, 0.05) * sigmaS;
                startH[3, j] = rhoS + BA.RandomNum(-0.05, 0.05) * rhoS;
                startH[4, j] = v0S + BA.RandomNum(-0.05, 0.05) * v0S;
            }
            for (int j = 0; j <= 4; j++)
            {
                startE[0, j] = startH[0, j];
                startE[1, j] = startH[1, j];
                startE[2, j] = startH[2, j];
                startE[3, j] = startH[3, j];
            }

            // Settings for the Nelder Mead algorithm
            NMSet nmsettings = new NMSet();

            nmsettings.MaxIters    = 50;        // Maximum number of iterations
            nmsettings.Tolerance   = 1e-20;     // Tolerance on best and worst function values
            nmsettings.ofsettingsE = ofsetE;    // Settings for the Elices objective function
            nmsettings.ofsettingsH = ofsetH;    // Settings for the Heston objective function

            // Heston Parameter Estimation all maturities ===========================================================================================
            nmsettings.choice = "Heston";
            int N = 5;

            nmsettings.N = N;
            double[] ParamH = new double[7];
            ParamH = NM.NelderMead(OF.f, nmsettings, startH);

            // Elices Parameter Estimation maturity by maturity ====================================================================================
            nmsettings.choice = "Elices";
            N            = 4;
            nmsettings.N = N;
            double v0 = ParamH[4];

            ofsetE.v0 = v0;
            double[][] ParamTD      = new double[4][];
            double[]   B            = new double[6];
            double[]   LossFunction = new double[NT];

            // Initialize maturities
            List <double> MatsList = new List <double>();

            double[] Mats;
            MatsList.Add(tau[0]);
            MatsList.Add(tau[1]);
            Mats = MatsList.ToArray();

            // Loop through the maturities, estimating parameters
            for (int t = 0; t <= NT - 1; t++)
            {
                ofsetE.t             = t;
                ofsetE.data.MktIV    = MktIV[t];            // Vector of market Implied vol
                ofsetE.data.MktPrice = MktPrice[t];         // Vector of market prices
                ofsetE.paramfixed    = ParamTD;             // Fixed parameters
                if (t >= 1)
                {
                    for (int j = 0; j <= N; j++)                       // Starting values are last period's estimates
                    {
                        startE[0, j] = B[0] + BA.RandomNum(-0.01, 0.01) * B[0];
                        startE[1, j] = B[1] + BA.RandomNum(-0.01, 0.01) * B[1];
                        startE[2, j] = B[2] + BA.RandomNum(-0.01, 0.01) * B[2];
                        startE[3, j] = B[3] + BA.RandomNum(-0.01, 0.01) * B[3];
                    }
                }
                if (t >= 2)
                {
                    MatsList.Add(tau[t]);
                    Mats = MatsList.ToArray();
                }
                ofsetE.T = Mats;
                nmsettings.ofsettingsE = ofsetE;
                B          = NM.NelderMead(OF.f, nmsettings, startE);
                ParamTD[t] = new double[4] {
                    B[0], B[1], B[2], B[3]
                };
                LossFunction[t] = B[4];
                Console.WriteLine("------ Finished maturity {0:F0} ------", ofsetE.t);
            }
            // Write the parameters
            Console.WriteLine("Heston statict parameters");
            Console.WriteLine("------------------------------------------------------------------");
            Console.WriteLine("    kappa      theta      sigma      rho         v0    LossFunction");
            Console.WriteLine("------------------------------------------------------------------");
            Console.WriteLine("{0,10:F5} {1,10:F5} {2,10:F5} {3,10:F5} {4,10:F5} {5,10:F5}",
                              ParamH[0], ParamH[1], ParamH[2], ParamH[3], ParamH[4], ParamH[5]);
            Console.WriteLine("------------------------------------------------------------------");
            Console.WriteLine(" ");
            Console.WriteLine("Elices Time dependent parameters");
            Console.WriteLine("-------------------------------------------------------------");
            Console.WriteLine("    kappa      theta      sigma      rho     LossFunction");
            Console.WriteLine("-------------------------------------------------------------");
            for (int t = 0; t <= NT - 1; t++)
            {
                Console.WriteLine("{0,10:F5} {1,10:F5} {2,10:F5} {3,10:F5} {4,10:F5}",
                                  ParamTD[t][0], ParamTD[t][1], ParamTD[t][2], ParamTD[t][3], LossFunction[t]);
            }
            Console.WriteLine("-------------------------------------------------------------");


            // Fitting Elices prices and implied vols ==========================================================================================================
            // Matrices for prices, parameters, and fixed parameters
            double[,] PriceE = new double[NK, NT];
            double[]   param      = new double[4];
            double[][] paramfixed = new double[NT - 1][];
            paramfixed[0] = ParamTD[0];

            // Define the dynamic array for the maturities and assign the first two maturities
            List <double> MatList = new List <double>();

            double[] Mat;
            MatList.Add(tau[0]);
            MatList.Add(tau[1]);
            Mat = MatList.ToArray();

            // Elices Implied volatilities
            double[,] IVE = new double[NK, NT];
            double a            = 0.01;
            double b            = 3.0;
            double tol          = 1.0e-5;
            int    MaxIter      = 1000;
            double ElicesIVRMSE = 0.0;

            // Find the prices and implied vols
            for (int t = 0; t <= NT - 1; t++)
            {
                for (int j = 0; j <= 3; j++)
                {
                    param[j] = ParamTD[t][j];
                }
                if (t == 0)
                {
                    for (int k = 0; k <= NK - 1; k++)
                    {
                        PriceE[k, 0] = EA.ElicesPrice(PutCall, opsettings.S, K[k], Mat, opsettings.r, opsettings.q, param, v0, opsettings.trap, X, W);
                    }
                }
                if (t == 1)
                {
                    for (int k = 0; k <= NK - 1; k++)
                    {
                        PriceE[k, 1] = EA.ElicesPrice(PutCall, opsettings.S, K[k], Mat, opsettings.r, opsettings.q, param, v0, opsettings.trap, X, W, paramfixed);
                    }
                }
                if (t >= 2)
                {
                    MatList.Add(tau[t]);
                    Mat = MatList.ToArray();
                    paramfixed[t - 1] = ParamTD[t - 1];
                    for (int k = 0; k <= NK - 1; k++)
                    {
                        PriceE[k, t] = EA.ElicesPrice(PutCall, opsettings.S, K[k], Mat, opsettings.r, opsettings.q, param, v0, opsettings.trap, X, W, paramfixed);
                    }
                }
                for (int k = 0; k <= NK - 1; k++)
                {
                    IVE[k, t]     = BA.BisecBSIV(PutCall, opsettings.S, K[k], opsettings.r, opsettings.q, T[t], a, b, PriceE[k, t], tol, MaxIter);
                    ElicesIVRMSE += Math.Pow(IVE[k, t] - MktIV[t][k], 2.0);
                }
            }
            // Fitting Heston prices and implied vols ==========================================================================================================
            double[,] PriceH = new double[NK, NT];
            double[,] IVH    = new double[NK, NT];
            HParam ParamTI = new HParam();

            ParamTI.kappa = ParamH[0];
            ParamTI.sigma = ParamH[1];
            ParamTI.theta = ParamH[2];
            ParamTI.rho   = ParamH[3];
            ParamTI.v0    = ParamH[4];
            double HestonIVRMSE = 0.0;

            for (int k = 0; k <= NK - 1; k++)
            {
                for (int t = 0; t <= NT - 1; t++)
                {
                    PriceH[k, t]  = HP.HestonPriceGaussLaguerre(ParamTI, ofsetH.opsettings, K[k], T[t], PutCall, X, W);
                    IVH[k, t]     = BA.BisecBSIV(PutCall, opsettings.S, K[k], opsettings.r, opsettings.q, T[t], a, b, PriceH[k, t], tol, MaxIter);
                    HestonIVRMSE += Math.Pow(IVH[k, t] - MktIVH[t, k], 2.0);
                }
            }
            Console.WriteLine("Heston IVRMSE {0,2:E5}", HestonIVRMSE);
            Console.WriteLine("Elices IVRMSE {0,2:E5}", ElicesIVRMSE);
        }