public virtual void TestElementwiseProduct(ConcatVectorTest.DenseTestVector d1, ConcatVectorTest.DenseTestVector d2) { for (int i = 0; i < d1.values.Length; i++) { for (int j = 0; j < d1.values[i].Length; j++) { Assume.AssumeTrue(d1.values[i][j] == d1.vector.GetValueAt(i, j)); } } for (int i_1 = 0; i_1 < d2.values.Length; i_1++) { for (int j = 0; j < d2.values[i_1].Length; j++) { Assume.AssumeTrue(d2.values[i_1][j] == d2.vector.GetValueAt(i_1, j)); } } ConcatVector clone = d1.vector.DeepClone(); clone.ElementwiseProductInPlace(d2.vector); for (int i_2 = 0; i_2 < d1.values.Length; i_2++) { for (int j = 0; j < d1.values[i_2].Length; j++) { double val = 0.0f; if (i_2 < d2.values.Length) { if (j < d2.values[i_2].Length) { val = d1.values[i_2][j] * d2.values[i_2][j]; } } NUnit.Framework.Assert.AreEqual(clone.GetValueAt(i_2, j), 5.0e-4, val); } } }
public virtual void TestNewEmptyClone(ConcatVectorTest.DenseTestVector d1) { ConcatVector empty = new ConcatVector(d1.vector.GetNumberOfComponents()); ConcatVector emptyClone = d1.vector.NewEmptyClone(); NUnit.Framework.Assert.IsTrue(empty.ValueEquals(emptyClone, 1.0e-5)); }
public override GraphicalModel Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus) { GraphicalModel model = new GraphicalModel(); // Create the variables and factors int[] variableSizes = new int[20]; for (int i = 0; i < 20; i++) { variableSizes[i] = sourceOfRandomness.NextInt(1, 5); } int numFactors = sourceOfRandomness.NextInt(12); for (int i_1 = 0; i_1 < numFactors; i_1++) { int[] neighbors = new int[sourceOfRandomness.NextInt(1, 3)]; int[] neighborSizes = new int[neighbors.Length]; for (int j = 0; j < neighbors.Length; j++) { neighbors[j] = sourceOfRandomness.NextInt(20); neighborSizes[j] = variableSizes[neighbors[j]]; } ConcatVectorTable table = new ConcatVectorTable(neighborSizes); foreach (int[] assignment in table) { int numComponents = sourceOfRandomness.NextInt(7); // Generate a vector ConcatVector v = new ConcatVector(numComponents); for (int x = 0; x < numComponents; x++) { if (sourceOfRandomness.NextBoolean()) { v.SetSparseComponent(x, sourceOfRandomness.NextInt(32), sourceOfRandomness.NextDouble()); } else { double[] val = new double[sourceOfRandomness.NextInt(12)]; for (int y = 0; y < val.Length; y++) { val[y] = sourceOfRandomness.NextDouble(); } v.SetDenseComponent(x, val); } } // set vec in table table.SetAssignmentValue(assignment, null); } model.AddFactor(table, neighbors); } // Add metadata to the variables, factors, and model GenerateMetaData(sourceOfRandomness, model.GetModelMetaDataByReference()); for (int i_2 = 0; i_2 < 20; i_2++) { GenerateMetaData(sourceOfRandomness, model.GetVariableMetaDataByReference(i_2)); } foreach (GraphicalModel.Factor factor in model.factors) { GenerateMetaData(sourceOfRandomness, factor.GetMetaDataByReference()); } return(model); }
public virtual void TestAddVector(ConcatVectorTest.DenseTestVector d1, ConcatVectorTest.DenseTestVector d2, ConcatVectorTest.DenseTestVector d3) { // Test the invariant x^Tz + 0.7*y^Tz == (x+0.7*y)^Tz double expected = d1.vector.DotProduct(d3.vector) + (0.7f * d2.vector.DotProduct(d3.vector)); ConcatVector clone = d1.vector.DeepClone(); clone.AddVectorInPlace(d2.vector, 0.7f); NUnit.Framework.Assert.AreEqual(clone.DotProduct(d3.vector), 5.0e-4, expected); }
public virtual ConcatVector ToVector(IDictionary <int, int> featureMap) { ConcatVector vector = new ConcatVector(20); foreach (int i in featureMap.Keys) { vector.SetSparseComponent(i, featureMap[i], 1.0); } return(vector); }
/// <summary> /// This constructs a fresh vector that is sized correctly to accommodate all the known sparse values for vectors /// that are possibly sparse. /// </summary> /// <returns> /// a new, internally correctly sized ConcatVector that will work correctly as weights for features from /// this namespace; /// </returns> public virtual ConcatVector NewWeightsVector() { ConcatVector vector = new ConcatVector(featureToIndex.Count); foreach (string s in sparseFeatureIndex.Keys) { int size = sparseFeatureIndex[s].Count; vector.SetDenseComponent(EnsureFeature(s), new double[size]); } return(vector); }
public virtual ConcatVector ToNamespaceVector(ConcatVectorNamespace @namespace, IDictionary <int, int> featureMap) { ConcatVector newVector = @namespace.NewVector(); foreach (int i in featureMap.Keys) { string feature = "feat" + i; string sparse = "index" + featureMap[i]; @namespace.SetSparseFeature(newVector, feature, sparse, 1.0); } return(newVector); }
public virtual void TestDeepCloneGetValueAt(ConcatVectorTest.DenseTestVector d1) { ConcatVector mv = d1.vector; ConcatVector clone = d1.vector.DeepClone(); for (int i = 0; i < d1.values.Length; i++) { for (int j = 0; j < d1.values[i].Length; j++) { NUnit.Framework.Assert.AreEqual(clone.GetValueAt(i, j), 1.0e-10, mv.GetValueAt(i, j)); } } }
public virtual void TestAddSparseToSparse(int sparseIndex1, double val1, int sparseIndex2, double val2) { ConcatVector v1 = new ConcatVector(1); v1.SetSparseComponent(0, (int)sparseIndex1, val1); ConcatVector v2 = new ConcatVector(1); v2.SetSparseComponent(0, (int)sparseIndex2, val2); double expected = v1.DotProduct(v2) + 0.7f * (v2.DotProduct(v2)); v1.AddVectorInPlace(v2, 0.7f); NUnit.Framework.Assert.AreEqual(v1.DotProduct(v2), 5.0e-3, expected); }
public virtual void TestAddSparseToDense(double[] dense1, int sparseIndex, double v) { ConcatVector v1 = new ConcatVector(1); v1.SetDenseComponent(0, dense1); ConcatVector v2 = new ConcatVector(1); v2.SetSparseComponent(0, (int)sparseIndex, v); double expected = v1.DotProduct(v2) + 0.7f * (v2.DotProduct(v2)); v1.AddVectorInPlace(v2, 0.7f); NUnit.Framework.Assert.AreEqual(v1.DotProduct(v2), 5.0e-4, expected); }
public virtual void TestCopyOnWrite(ConcatVectorTest.DenseTestVector d1) { ConcatVector v2 = d1.vector.DeepClone(); v2.AddVectorInPlace(v2, 1.0); for (int i = 0; i < d1.values.Length; i++) { for (int j = 0; j < d1.values[i].Length; j++) { NUnit.Framework.Assert.AreEqual(d1.vector.GetValueAt(i, j), 5.0e-4, d1.values[i][j]); NUnit.Framework.Assert.AreEqual(v2.GetValueAt(i, j), 5.0e-4, d1.values[i][j] * 2); } } }
public virtual void TestGetSparseIndex(int sparse1, double sparse1Val, int sparse2, double sparse2Val) { ConcatVector v1 = new ConcatVector(2); ConcatVector v2 = new ConcatVector(2); v1.SetSparseComponent(0, (int)sparse1, sparse1Val); v1.SetSparseComponent(1, (int)sparse2, sparse1Val); v2.SetSparseComponent(0, (int)sparse2, sparse2Val); v2.SetSparseComponent(1, (int)sparse1, sparse2Val); NUnit.Framework.Assert.AreEqual(sparse1, v1.GetSparseIndex(0)); NUnit.Framework.Assert.AreEqual(sparse2, v1.GetSparseIndex(1)); NUnit.Framework.Assert.AreEqual(sparse2, v2.GetSparseIndex(0)); NUnit.Framework.Assert.AreEqual(sparse1, v2.GetSparseIndex(1)); }
public virtual void TestProtoVector(ConcatVectorTest.DenseTestVector d1, ConcatVectorTest.DenseTestVector d2) { double expected = d1.vector.DotProduct(d2.vector); ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); System.Diagnostics.Debug.Assert((d1.vector.GetType() == typeof(ConcatVector))); d1.vector.WriteToStream(byteArrayOutputStream); byteArrayOutputStream.Close(); byte[] bytes = byteArrayOutputStream.ToByteArray(); ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(bytes); ConcatVector recovered = ConcatVector.ReadFromStream(byteArrayInputStream); NUnit.Framework.Assert.AreEqual(recovered.DotProduct(d2.vector), 5.0e-4, expected); }
public override ConcatVectorTest.DenseTestVector Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus) { int length = sourceOfRandomness.NextInt(10); double[][] trueValues = new double[length][]; bool[] sparse = new bool[length]; int[] sizes = new int[length]; // Generate sizes in advance, so we can pass the clues on to the constructor for the multivector for (int i = 0; i < length; i++) { bool isSparse = sourceOfRandomness.NextBoolean(); sparse[i] = isSparse; if (isSparse) { sizes[i] = -1; } else { int componentLength = sourceOfRandomness.NextInt(SparseVectorLength); sizes[i] = componentLength; } } ConcatVector mv = new ConcatVector(length); for (int i_1 = 0; i_1 < length; i_1++) { if (sparse[i_1]) { trueValues[i_1] = new double[SparseVectorLength]; int sparseIndex = sourceOfRandomness.NextInt(SparseVectorLength); double sparseValue = sourceOfRandomness.NextDouble(); trueValues[i_1][sparseIndex] = sparseValue; mv.SetSparseComponent(i_1, sparseIndex, sparseValue); } else { trueValues[i_1] = new double[sizes[i_1]]; // Ensure we have some null components in our generated vector if (sizes[i_1] > 0) { for (int j = 0; j < sizes[i_1]; j++) { trueValues[i_1][j] = sourceOfRandomness.NextDouble(); } mv.SetDenseComponent(i_1, trueValues[i_1]); } } } return(new ConcatVectorTest.DenseTestVector(trueValues, mv)); }
public virtual void TestAppendDenseComponent(double[] vector1, double[] vector2) { ConcatVector v1 = new ConcatVector(1); ConcatVector v2 = new ConcatVector(1); v1.SetDenseComponent(0, vector1); v2.SetDenseComponent(0, vector2); double sum = 0.0f; for (int i = 0; i < Math.Min(vector1.Length, vector2.Length); i++) { sum += vector1[i] * vector2[i]; } NUnit.Framework.Assert.AreEqual(v1.DotProduct(v2), 5.0e-4, sum); }
public virtual void TestAppendSparseComponent(int sparse1, double sparse1Val, int sparse2, double sparse2Val) { ConcatVector v1 = new ConcatVector(1); ConcatVector v2 = new ConcatVector(1); v1.SetSparseComponent(0, (int)sparse1, sparse1Val); v2.SetSparseComponent(0, (int)sparse2, sparse2Val); if (sparse1 == sparse2) { NUnit.Framework.Assert.AreEqual(v1.DotProduct(v2), 5.0e-4, sparse1Val * sparse2Val); } else { NUnit.Framework.Assert.AreEqual(v1.DotProduct(v2), 5.0e-4, 0.0); } }
public virtual void TestValueEquals(ConcatVectorTest.DenseTestVector d1) { ConcatVector clone = d1.vector.DeepClone(); NUnit.Framework.Assert.IsTrue(clone.ValueEquals(d1.vector, 1.0e-5)); NUnit.Framework.Assert.IsTrue(d1.vector.ValueEquals(clone, 1.0e-5)); NUnit.Framework.Assert.IsTrue(d1.vector.ValueEquals(d1.vector, 1.0e-5)); NUnit.Framework.Assert.IsTrue(clone.ValueEquals(clone, 1.0e-5)); Random r = new Random(); int size = clone.GetNumberOfComponents(); if (size > 0) { clone.AddVectorInPlace(d1.vector, 1.0); // If the clone is a 0 vector bool isZero = true; foreach (double[] arr in d1.values) { foreach (double d in arr) { if (d != 0) { isZero = false; } } } if (isZero) { NUnit.Framework.Assert.IsTrue(clone.ValueEquals(d1.vector, 1.0e-5)); NUnit.Framework.Assert.IsTrue(d1.vector.ValueEquals(clone, 1.0e-5)); } else { NUnit.Framework.Assert.IsFalse(clone.ValueEquals(d1.vector, 1.0e-5)); NUnit.Framework.Assert.IsFalse(d1.vector.ValueEquals(clone, 1.0e-5)); } NUnit.Framework.Assert.IsTrue(d1.vector.ValueEquals(d1.vector, 1.0e-5)); NUnit.Framework.Assert.IsTrue(clone.ValueEquals(clone, 1.0e-5)); // refresh the clone clone = d1.vector.DeepClone(); int tinker = r.NextInt(size); d1.vector.SetDenseComponent(tinker, new double[] { 0, 0, 1 }); clone.SetSparseComponent(tinker, 2, 1); NUnit.Framework.Assert.IsTrue(d1.vector.ValueEquals(clone, 1.0e-5)); NUnit.Framework.Assert.IsTrue(clone.ValueEquals(d1.vector, 1.0e-5)); } }
/// <summary>This writes a feature's individual value, using the human readable name if possible, to a StringBuilder</summary> /// <exception cref="System.IO.IOException"/> private void DebugFeatureValue(string feature, int index, ConcatVector vector, BufferedWriter bw) { bw.Write("\t"); if (sparseFeatureIndex.Contains(feature) && sparseFeatureIndex[feature].Values.Contains(index)) { // we can map this index to an interpretable string, so we do bw.Write(reverseSparseFeatureIndex[feature][index]); } else { // we can't map this to a useful string, so we default to the number bw.Write(int.ToString(index)); } bw.Write(": "); bw.Write(double.ToString(vector.GetValueAt(featureToIndex[feature], index))); bw.Write("\n"); }
public virtual void TestResizeOnSetComponent(IDictionary <int, int> featureMap1, IDictionary <int, int> featureMap2) { ConcatVectorNamespace @namespace = new ConcatVectorNamespace(); ConcatVector namespace1 = ToNamespaceVector(@namespace, (IDictionary <int, int>)featureMap1); ConcatVector namespace2 = ToNamespaceVector(@namespace, (IDictionary <int, int>)featureMap2); ConcatVector regular1 = ToVector((IDictionary <int, int>)featureMap1); ConcatVector regular2 = ToVector((IDictionary <int, int>)featureMap2); NUnit.Framework.Assert.AreEqual(namespace1.DotProduct(namespace2), 1.0e-5, regular1.DotProduct(regular2)); ConcatVector namespaceSum = namespace1.DeepClone(); namespaceSum.AddVectorInPlace(namespace2, 1.0); ConcatVector regularSum = regular1.DeepClone(); regularSum.AddVectorInPlace(regular2, 1.0); NUnit.Framework.Assert.AreEqual(namespace1.DotProduct(namespaceSum), 1.0e-5, regular1.DotProduct(regularSum)); NUnit.Framework.Assert.AreEqual(namespaceSum.DotProduct(namespace2), 1.0e-5, regularSum.DotProduct(regular2)); }
public virtual void TestElementwiseSparseToDense(double[] dense1, int sparseIndex, double v) { ConcatVector v1 = new ConcatVector(1); v1.SetDenseComponent(0, dense1); ConcatVector v2 = new ConcatVector(1); v2.SetSparseComponent(0, (int)sparseIndex, v); v1.ElementwiseProductInPlace(v2); for (int i = 0; i < dense1.Length; i++) { double expected = 0.0f; if (i == sparseIndex) { expected = dense1[i] * v; } NUnit.Framework.Assert.AreEqual(v1.GetValueAt(0, i), 5.0e-4, expected); } }
public virtual void TestElementwiseSparseToSparse(int sparseIndex1, double val1, int sparseIndex2, double val2) { ConcatVector v1 = new ConcatVector(1); v1.SetSparseComponent(0, (int)sparseIndex1, val1); ConcatVector v2 = new ConcatVector(1); v2.SetSparseComponent(0, (int)sparseIndex2, val2); v1.ElementwiseProductInPlace(v2); for (int i = 0; i < 10; i++) { double expected = 0.0f; if (i == sparseIndex1 && i == sparseIndex2) { expected = val1 * val2; } NUnit.Framework.Assert.AreEqual(v1.GetValueAt(0, i), 5.0e-4, expected); } }
/// <summary>This prints out a ConcatVector by mapping to the namespace, to make debugging learning algorithms easier.</summary> /// <param name="vector">the vector to print</param> /// <param name="bw">the output stream to write to</param> /// <exception cref="System.IO.IOException"/> public virtual void DebugVector(ConcatVector vector, BufferedWriter bw) { foreach (string key in featureToIndex.Keys) { bw.Write(key); bw.Write(":\n"); int i = featureToIndex[key]; if (vector.IsComponentSparse(i)) { DebugFeatureValue(key, vector.GetSparseIndex(i), vector, bw); } else { double[] arr = vector.GetDenseComponent(i); for (int j = 0; j < arr.Length; j++) { DebugFeatureValue(key, j, vector, bw); } } } }
public override ConcatVector[][][] Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus) { int l = sourceOfRandomness.NextInt(10) + 1; int m = sourceOfRandomness.NextInt(10) + 1; int n = sourceOfRandomness.NextInt(10) + 1; ConcatVector[][][] factor3 = new ConcatVector[l][][]; for (int i = 0; i < factor3.Length; i++) { for (int j = 0; j < factor3[0].Length; j++) { for (int k = 0; k < factor3[0][0].Length; k++) { int numComponents = sourceOfRandomness.NextInt(7); ConcatVector v = new ConcatVector(numComponents); for (int x = 0; x < numComponents; x++) { if (sourceOfRandomness.NextBoolean()) { v.SetSparseComponent(x, sourceOfRandomness.NextInt(32), sourceOfRandomness.NextDouble()); } else { double[] val = new double[sourceOfRandomness.NextInt(12)]; for (int y = 0; y < val.Length; y++) { val[y] = sourceOfRandomness.NextDouble(); } v.SetDenseComponent(x, val); } } factor3[i][j][k] = v; } } } return(factor3); }
/// <summary> /// This adds a dense feature to a vector, setting the appropriate component of the given vector to the passed in /// value. /// </summary> /// <param name="vector">the vector</param> /// <param name="featureName">the feature whose value to set</param> /// <param name="value">the value we want to set this vector to</param> public virtual void SetDenseFeature(ConcatVector vector, string featureName, double[] value) { vector.SetDenseComponent(EnsureFeature(featureName), value); }
/// <summary> /// This adds a sparse feature to a vector, setting the appropriate component of the given vector to the passed in /// value. /// </summary> /// <param name="vector">the vector</param> /// <param name="featureName">the feature whose value to set</param> /// <param name="index">the index of the one-hot vector to set, as a string, which we will translate into a mapping</param> /// <param name="value">the value we want to set this one-hot index to</param> public virtual void SetSparseFeature(ConcatVector vector, string featureName, string index, double value) { vector.SetSparseComponent(EnsureFeature(featureName), EnsureSparseFeature(featureName, index), value); }
public DenseTestVector(double[][] values, ConcatVector vector) { this.values = values; this.vector = vector; }