示例#1
0
        private void redrawPipeline()
        {
            if (currentRunFile != "" && currentSource != null)
            {

                DataAccess dataAccess = new DataAccess(currentRunFile);

                int width = Convert.ToInt32(dataAccess.GetParameter("Master_Width"));
                int height = Convert.ToInt32(dataAccess.GetParameter("Master_Height"));
                bool aspect = Convert.ToBoolean(dataAccess.GetParameter("Master_Aspect"));
                int scalingMethod = Convert.ToInt32(dataAccess.GetParameter("Master_Resize"));

                chkContastStretch.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Stretch"));
                chkHistogram.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Histo"));
                chkGaussian.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Gaussian"));
                numBlurStrength.Value = Convert.ToInt32(dataAccess.GetParameter("Filter_BlurStr"));
                chkContrast.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Contrast"));
                numContrast.Value = Convert.ToDecimal(dataAccess.GetParameter("Filter_ContrastStr"));
                chkGreyscale.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Greyscale"));
                chkBradley.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Bradley"));
                chkThreshold.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Threshold"));
                numThreshold.Value = Convert.ToDecimal(dataAccess.GetParameter("Filter_ThresholdStr"));

                Preprocessor preprocessor = new Preprocessor();
                preprocessor.Bradley = chkBradley.Checked;
                preprocessor.ContrastAdjustment = chkContrast.Checked;
                preprocessor.ContrastStrength = numContrast.Value;
                preprocessor.ContrastStretch = chkContastStretch.Checked;
                preprocessor.FilterLevel = 1;
                preprocessor.Gaussian = chkGaussian.Checked;
                preprocessor.GaussianStrength = numBlurStrength.Value;
                preprocessor.Greyscale = chkGreyscale.Checked;
                preprocessor.Histogram = chkHistogram.Checked;
                preprocessor.ImageSize = new Size(width, height);
                preprocessor.KeepAspectRatio = aspect;
                preprocessor.ScalingMethod = (ScalingMethods)scalingMethod;
                preprocessor.Threshold = chkThreshold.Checked;
                preprocessor.ThresholdStrength = numThreshold.Value;
                imgTestImage.LoadImage(preprocessor.Process((Bitmap)currentSource.InternalImage));
            }
        }
示例#2
0
        public Optimiser(string filename)
        {
            Utils.Logger.Log("Loading stopwatch... ");
            stopWatch = new Stopwatch();
            ResultCounter = new Stopwatch();

            this.filename = filename;
            Utils.Logger.Log("Loading preprocessor parameters from " + filename);
            dataAccess = new DataAccess(filename);
            preprocessor = new Preprocessor();

            preprocessor.ImageSize = new Size(Convert.ToInt32(dataAccess.GetParameter("Master_Width")), Convert.ToInt32(dataAccess.GetParameter("Master_Height")));
            preprocessor.KeepAspectRatio = Convert.ToBoolean(dataAccess.GetParameter("Master_Aspect"));
            preprocessor.ScalingMethod = (ScalingMethods)Convert.ToInt32(dataAccess.GetParameter("Master_Resize"));
            preprocessor.ContrastStretch = Convert.ToBoolean(dataAccess.GetParameter("Filter_Stretch"));
            preprocessor.Histogram = Convert.ToBoolean(dataAccess.GetParameter("Filter_Histo"));
            preprocessor.Gaussian = Convert.ToBoolean(dataAccess.GetParameter("Filter_Gaussian"));
            preprocessor.GaussianStrength = Convert.ToInt32(dataAccess.GetParameter("Filter_BlurStr"));
            preprocessor.ContrastAdjustment = Convert.ToBoolean(dataAccess.GetParameter("Filter_Contrast"));
            preprocessor.ContrastStrength = Convert.ToDecimal(dataAccess.GetParameter("Filter_ContrastStr"));
            preprocessor.Greyscale = Convert.ToBoolean(dataAccess.GetParameter("Filter_Greyscale"));
            preprocessor.Bradley = Convert.ToBoolean(dataAccess.GetParameter("Filter_Bradley"));
            preprocessor.Threshold = Convert.ToBoolean(dataAccess.GetParameter("Filter_Threshold"));
            preprocessor.ThresholdStrength = Convert.ToDecimal(dataAccess.GetParameter("Filter_ThresholdStr"));

            /*
            dataAccess.SetParameter("Opt_Bp_LearningType", cmbLearningRateType.SelectedItem.ToString());
            dataAccess.SetParameter("Opt_Bp_InitialLearnRate", txtInitialRate.Text);
            dataAccess.SetParameter("Opt_Bp_FinalLearnRate", txtFinalRate.Text);
            dataAccess.SetParameter("Opt_Bp_JitterEpoch", txtJitterEpoch.Text);
            dataAccess.SetParameter("Opt_Bp_JitterNoiseLimit", txtJitterNoiseLimit.Text);
            dataAccess.SetParameter("Opt_Bp_MaxIterations", txtMaxIterations.Text);
            dataAccess.SetParameter("Opt_Bp_MinError", txtMinimumError.Text);
            */
            bool usePSO = false;
            bool useBP = false;
            try
            {
                useBP = Convert.ToBoolean(dataAccess.GetParameter("Opt_Bp_Enabled"));
            }
            catch (Exception)
            {
                Utils.Logger.Log("Warning unable to read BP params");
            }
            try
            {
                usePSO = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_Enabled"));
            }
            catch (Exception)
            {
                Utils.Logger.Log("Warning unable to read PSO params");
            }

            if (usePSO && useBP)
            {
                throw new NotImplementedException("At this current time you cannot use both BP and PSO");

            }

            InputGroup[] inputGroups = dataAccess.GetInputGroups();
            SourceItem[] sourceItems = dataAccess.GetSourceItems();

            /*
            Utils.Logger.Log("Preprocessing images...");
            foreach (SourceItem item in sourceItems)
            {
                Utils.Logger.Log("Preprocessing item {0} ", item.Filename);
                item.InternalImage = preprocessor.Process((Bitmap)item.InternalImage);
            }
             */

            int total = 0;
            foreach (InputGroup inputGroup in inputGroups)
            {
                if (inputGroup.InputGroupType == InputGroupType.Grid)
                {
                    total += (inputGroup.Segments) * (inputGroup.Segments);
                }
                else
                {
                    total += inputGroup.Segments;
                }

            }

            maxIterations = Convert.ToInt32(dataAccess.GetParameter("Opt_Global_MaxIterations"));
            minError = Convert.ToDouble(dataAccess.GetParameter("Opt_Global_MinError"));
            maxTime = Convert.ToInt32(dataAccess.GetParameter("Opt_Global_MaxTime"));
            results = new float[Convert.ToInt32(dataAccess.GetParameter("Opt_Global_BufferSize"))];

            if (useBP)
            {

                int learningRateFunction = Convert.ToInt32(dataAccess.GetParameter("Opt_Bp_LearningType"));
                double initialLR = Convert.ToDouble(dataAccess.GetParameter("Opt_Bp_InitialLearnRate"));
                double finalLR = Convert.ToDouble(dataAccess.GetParameter("Opt_Bp_FinalLearnRate"));
                int jitterEpoch = Convert.ToInt32(dataAccess.GetParameter("Opt_Bp_JitterEpoch"));
                double jitterNoiseLimit = Convert.ToDouble(dataAccess.GetParameter("Opt_Bp_JitterNoiseLimit"));

                NeuronDotNet.Core.Backpropagation.LinearLayer inputLayer = new NeuronDotNet.Core.Backpropagation.LinearLayer(preprocessor.ImageSize.Width * preprocessor.ImageSize.Height);
                NeuronDotNet.Core.Backpropagation.SigmoidLayer hiddenLayer = new NeuronDotNet.Core.Backpropagation.SigmoidLayer(total);
                hiddenLayer.InputGroups = inputGroups.Length;
                NeuronDotNet.Core.Backpropagation.SigmoidLayer outputLayer = new NeuronDotNet.Core.Backpropagation.SigmoidLayer(1);

                hiddenLayer.Initializer = new NguyenWidrowFunction();

                new BackpropagationConnector(
                    inputLayer,
                    hiddenLayer,
                    inputGroups,
                    preprocessor.ImageSize.Width,
                    preprocessor.ImageSize.Height
                    );

                new BackpropagationConnector(hiddenLayer, outputLayer);

                network = new BackpropagationNetwork(inputLayer, outputLayer);

                switch (learningRateFunction)
                {
                    case 0:
                        network.SetLearningRate(initialLR);
                        break;
                    case 1:
                        network.SetLearningRate(new NeuronDotNet.Core.LearningRateFunctions.ExponentialFunction(initialLR, finalLR));//exp
                        break;
                    case 2:
                        network.SetLearningRate(new NeuronDotNet.Core.LearningRateFunctions.HyperbolicFunction(initialLR, finalLR));//hyp
                        break;
                    case 3:
                        network.SetLearningRate(new NeuronDotNet.Core.LearningRateFunctions.LinearFunction(initialLR, finalLR));//lin
                        break;

                    default:
                        throw new ArgumentOutOfRangeException("The learning rate index is out of range.\n");
                }
                network.JitterEpoch = jitterEpoch;
                network.JitterNoiseLimit = jitterNoiseLimit;

            }

            if (usePSO)
            {
                double minP = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_MinP"));
                double maxP = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_MaxP"));
                double minI = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_MinI"));
                double maxI = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_MaxI"));
                double quant = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_Quant"));
                double vMax = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_vMax"));

                int clamping = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Clamping"));
                int initLinks = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_InitLinks"));
                int randomness = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Randomness"));
                int randOrder = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_ParticleOrder"));
                int rotation = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Rotation"));

                int dimensions = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Dimensions"));
                int swarmSize = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Particles"));
                double k = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_k"));
                double p = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_p"));
                double w = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_w"));
                double c = Convert.ToDouble(dataAccess.GetParameter("Opt_Pso_c"));

                Parameters param = new Parameters();
                param.vMax = vMax;

                param.clamping = clamping;
                // 0 => no clamping AND no evaluation. WARNING: the program
                // 				may NEVER stop (in particular with option move 20 (jumps)) 1
                // *1 => classical. Set to bounds, and velocity to zero

                param.initLink = initLinks; // 0 => re-init links after each unsuccessful iteration
                // 1 => re-init links after each successful iteration

                param.rand = randomness; // 0 => Use KISS as random number generator.
                // Any other value => use the system one

                param.randOrder = randOrder; // 0 => at each iteration, particles are modified
                //     always according to the same order 0..S-1
                //*1 => at each iteration, particles numbers are
                //		randomly permutated
                param.rotation = rotation;
                // WARNING. Experimental code, completely valid only for dimension 2
                // 0 =>  sensitive to rotation of the system of coordinates
                // 1 => non sensitive (except side effects),
                // 			by using a rotated hypercube for the probability distribution
                //			WARNING. Quite time consuming!

                param.stop = 0;	// Stop criterion
                // 0 => error < pb.epsilon
                // 1 => eval >= pb.evalMax
                // 2 => ||x-solution|| < pb.epsilon

                // ===========================================================
                // RUNs

                // Initialize some objects
                //pb = new Problem(function);

                // You may "manipulate" S, p, w and c
                // but here are the suggested values
                param.S = swarmSize;
                if (param.S > 910) param.S = 910;

                param.K = (int)k;
                param.p = p;
                // (to simulate the global best PSO, set param.p=1)
                //param.p=1;

                param.w = w;
                param.c = c;

                NeuronDotNet.Core.PSO.LinearLayer inputLayer = new NeuronDotNet.Core.PSO.LinearLayer(preprocessor.ImageSize.Width * preprocessor.ImageSize.Height);
                NeuronDotNet.Core.PSO.SigmoidLayer hiddenLayer = new NeuronDotNet.Core.PSO.SigmoidLayer(total);
                hiddenLayer.InputGroups = inputGroups.Length;
                NeuronDotNet.Core.PSO.SigmoidLayer outputLayer = new NeuronDotNet.Core.PSO.SigmoidLayer(1);

                hiddenLayer.Initializer = new NguyenWidrowFunction();

                new PSOConnector(
                    inputLayer,
                    hiddenLayer,
                    inputGroups,
                    preprocessor.ImageSize.Width,
                    preprocessor.ImageSize.Height
                    );

                new PSOConnector(hiddenLayer, outputLayer);

                PSONetwork n = new PSONetwork(inputLayer, outputLayer);

                n.PsoParameters = param;
                n.PsoProblem.MaxI = maxI;
                n.PsoProblem.MinI = minI;
                n.PsoProblem.MaxP = maxP;
                n.PsoProblem.MinP = minP;
                n.PsoProblem.Quantisation = quant;
                network = n;

            }

            set = new TrainingSet(preprocessor.ImageSize.Width * preprocessor.ImageSize.Height, 1);
            foreach (SourceItem item in sourceItems)
            {

                double[] weights = Utils.getImageWeights(item.InternalImage, inputGroups);
                set.Add(new TrainingSample(weights, new double[] { (double)item.SampleType }));

            }
            network.EndEpochEvent += new TrainingEpochEventHandler(network_EndEpochEvent);
            network.Initialize();
        }
示例#3
0
        private void loadRuns(string filename)
        {
            Utils.Logger.Log("Getting runs...");
            lstRuns.Items.Clear();
            DataAccess dataAccess = new DataAccess(filename);
            Run[] runs = dataAccess.GetRuns();
            foreach (Run run in runs)
            {
                lstRuns.Items.Add(new ListViewItem(run.ToStringArray()));
            }

            lstInputGroups.Items.Clear();
            InputGroup[] groups = dataAccess.GetInputGroups();
            foreach (InputGroup group in groups)
            {
                lstInputGroups.Items.Add(group);

            }
        }
示例#4
0
        private double calculateFitness()
        {
            DataAccess dataAccess = new DataAccess(currentRunFile);
            if (currentRunFile != "" && currentSource != null && lstRuns.SelectedItems.Count > 0)
            {

                int width = Convert.ToInt32(dataAccess.GetParameter("Master_Width"));
                int height = Convert.ToInt32(dataAccess.GetParameter("Master_Height"));
                bool aspect = Convert.ToBoolean(dataAccess.GetParameter("Master_Aspect"));
                int scalingMethod = Convert.ToInt32(dataAccess.GetParameter("Master_Resize"));

                chkContastStretch.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Stretch"));
                chkHistogram.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Histo"));
                chkGaussian.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Gaussian"));
                numBlurStrength.Value = Convert.ToInt32(dataAccess.GetParameter("Filter_BlurStr"));
                chkContrast.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Contrast"));
                numContrast.Value = Convert.ToDecimal(dataAccess.GetParameter("Filter_ContrastStr"));
                chkGreyscale.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Greyscale"));
                chkBradley.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Bradley"));
                chkThreshold.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Threshold"));
                numThreshold.Value = Convert.ToDecimal(dataAccess.GetParameter("Filter_ThresholdStr"));

                Preprocessor preprocessor = new Preprocessor();
                preprocessor.Bradley = chkBradley.Checked;
                preprocessor.ContrastAdjustment = chkContrast.Checked;
                preprocessor.ContrastStrength = numContrast.Value;
                preprocessor.ContrastStretch = chkContastStretch.Checked;
                preprocessor.FilterLevel = 1;
                preprocessor.Gaussian = chkGaussian.Checked;
                preprocessor.GaussianStrength = numBlurStrength.Value;
                preprocessor.Greyscale = chkGreyscale.Checked;
                preprocessor.Histogram = chkHistogram.Checked;
                preprocessor.ImageSize = new Size(width, height);
                preprocessor.KeepAspectRatio = aspect;
                preprocessor.ScalingMethod = (ScalingMethods)scalingMethod;
                preprocessor.Threshold = chkThreshold.Checked;
                preprocessor.ThresholdStrength = numThreshold.Value;

                Network network = dataAccess.GetNetwork(int.Parse(lstRuns.SelectedItems[0].SubItems[5].Text));
                currentSource.Preprocessor = preprocessor;
                Bitmap b = (Bitmap)currentSource.InternalImage;
                double[] result = network.Run(Utils.getImageWeights(b, (InputGroup[])lstInputGroups.Items.Cast<InputGroup>().ToArray<InputGroup>()));
                b.Dispose();
                lblFitness.Text = "Fitness: " + result[0].ToString();
                return result[0];
            }
            return -1.0 ;
        }
示例#5
0
        private void btnSaveRun_Click(object sender, EventArgs e)
        {
            using (SaveFileDialog dlgSave = new SaveFileDialog())
            {
                dlgSave.AddExtension = true;
                dlgSave.DefaultExt = "erun";
                dlgSave.Filter = "ENFORM run file(*.erun)|*.erun";
                dlgSave.Title = "Save run file as...";
                if (dlgSave.ShowDialog() == DialogResult.OK)
                {
                    BackgroundWorker worker = new BackgroundWorker();
                    worker.WorkerReportsProgress = true;
                    worker.DoWork += new DoWorkEventHandler(worker_DoWork);
                    worker.ProgressChanged += new ProgressChangedEventHandler(worker_ProgressChanged);
                    worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);

                    this.Enabled = false;
                    dlgProgress = new frmProgressDialog();
                    dlgProgress.Show(this);
                    dlgProgress.Title = "Saving run file...";

                    Preprocessor preprocessor = new Preprocessor();
                    preprocessor.Bradley = chkBradley.Checked;
                    preprocessor.ContrastAdjustment = chkContrast.Checked;
                    preprocessor.ContrastStrength = numContrast.Value;
                    preprocessor.ContrastStretch = chkContastStretch.Checked;
                    preprocessor.FilterLevel = filterLevel;
                    preprocessor.Gaussian = chkGaussian.Checked;
                    preprocessor.GaussianStrength = numBlurStrength.Value;
                    preprocessor.Greyscale = chkGreyscale.Checked;
                    preprocessor.Histogram = chkHistogram.Checked;
                    preprocessor.ImageSize = new Size(Int32.Parse(txtWidth.Text), Int32.Parse(txtHeight.Text));
                    preprocessor.KeepAspectRatio = chkAspect.Checked;
                    preprocessor.ScalingMethod = (ScalingMethods)cmbScalingMethod.SelectedIndex;
                    preprocessor.Threshold = chkThreshold.Checked;
                    preprocessor.ThresholdStrength = numThreshold.Value;

                    Utils.Logger.Log("Caching all images to store in run file...");
                    if (chkEmbed.Checked)
                    {
                        //cacheAll();
                    }

                    DataAccess dataAccess = new DataAccess(dlgSave.FileName);
                    Utils.Logger.Log("Clearing database data...");
                    dataAccess.ClearFile();
                    Utils.Logger.Log("Adding input groups...");
                    for (int i = 0; i < lstInputGroups.Items.Count; i++)
                    {
                        dataAccess.AddInputGroup(i, (InputGroup)lstInputGroups.Items[i]);
                    }

                    worker.RunWorkerAsync(new object[] {dataAccess,preprocessor});

                }

            }
        }
示例#6
0
        private void btnLoadRun_Click(object sender, EventArgs e)
        {
            using (OpenFileDialog dlgLoad = new OpenFileDialog())
            {
                dlgLoad.AddExtension = true;
                dlgLoad.DefaultExt = "erun";
                dlgLoad.Filter = "ENFORM run file(*.erun)|*.erun";
                dlgLoad.Title = "Open run file...";
                if (dlgLoad.ShowDialog() == DialogResult.OK)
                {
                    DataAccess dataAccess = new DataAccess(dlgLoad.FileName);
                    SourceItem[] sources = dataAccess.GetSourceItems();
                    sourceItems.Clear();
                    lstInputs.Items.Clear();
                    foreach (SourceItem source in sources)
                    {
                        ListViewItem newItem = lstInputs.Items.Add(new ListViewItem(source.GetStringValues()));
                        sourceItems.Add(newItem.GetHashCode(), source);
                    }
                    InputGroup[] groups = dataAccess.GetInputGroups();
                    lstInputGroups.Items.Clear();
                    foreach (InputGroup group in groups)
                    {
                        lstInputGroups.Items.Add(group);

                    }

                    txtWidth.Text =  dataAccess.GetParameter("Master_Width");
                    txtHeight.Text = dataAccess.GetParameter("Master_Height");
                    chkAspect.Checked = Convert.ToBoolean(dataAccess.GetParameter("Master_Aspect"));
                    cmbScalingMethod.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Master_Resize"));
                    chkContastStretch.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Stretch"));
                    chkHistogram.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Histo"));
                    chkGaussian.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Gaussian"));
                    numBlurStrength.Value = Convert.ToInt32(dataAccess.GetParameter("Filter_BlurStr"));
                    chkContrast.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Contrast"));
                    numContrast.Value = Convert.ToDecimal(dataAccess.GetParameter("Filter_ContrastStr"));
                    chkGreyscale.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Greyscale"));
                    chkBradley.Checked = Convert.ToBoolean(dataAccess.GetParameter("Filter_Bradley"));
                    chkThreshold.Checked  = Convert.ToBoolean(dataAccess.GetParameter("Filter_Threshold"));
                    numThreshold.Value  = Convert.ToDecimal(dataAccess.GetParameter("Filter_ThresholdStr"));

                    try
                    {
                        txtMaxIterations.Text = dataAccess.GetParameter("Opt_Global_MaxIterations");
                        txtMinimumError.Text = dataAccess.GetParameter("Opt_Global_MinError");
                        txtMaxTime.Text = dataAccess.GetParameter("Opt_Global_MaxTime");
                        txtBufferSize.Text = dataAccess.GetParameter("Opt_Global_BufferSize");
                    }
                    catch (Exception)
                    {
                        Utils.Logger.Log("Warning: Error reading global parameters");
                    }

                    try
                    {
                        chkBackPropogation.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Bp_Enabled"));
                        cmbLearningRateType.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Bp_LearningType"));
                        txtInitialRate.Text = dataAccess.GetParameter("Opt_Bp_InitialLearnRate");
                        txtFinalRate.Text = dataAccess.GetParameter("Opt_Bp_FinalLearnRate");
                        txtJitterEpoch.Text = dataAccess.GetParameter("Opt_Bp_JitterEpoch");
                        txtJitterNoiseLimit.Text = dataAccess.GetParameter("Opt_Bp_JitterNoiseLimit");

                    }
                    catch (Exception)
                    {
                        Utils.Logger.Log("Warning: Error reading backprop parameters");
                    }
                    try
                    {

                        chkPSO.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_Enabled"));

                        txtMinP.Text = dataAccess.GetParameter("Opt_Pso_MinP");
                        txtMaxP.Text = dataAccess.GetParameter("Opt_Pso_MaxP");
                        txtMinI.Text = dataAccess.GetParameter("Opt_Pso_MinI");
                        txtMaxI.Text = dataAccess.GetParameter("Opt_Pso_MaxI");
                        txtQuant.Text = dataAccess.GetParameter("Opt_Pso_Quant");
                        txtVMax.Text = dataAccess.GetParameter("Opt_Pso_vMax");

                        cmbClamping.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Clamping"));
                        cmbInitLinks.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_InitLinks"));
                        cmbPSORandom.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Randomness"));
                        cmbRandOrder.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_ParticleOrder"));
                        cmbRotation.SelectedIndex = Convert.ToInt32(dataAccess.GetParameter("Opt_Pso_Rotation"));

                        txtDimensions.Text = dataAccess.GetParameter("Opt_Pso_Dimensions");
                        txtSwarmSize.Text = dataAccess.GetParameter("Opt_Pso_Particles");
                        txtK.Text = dataAccess.GetParameter("Opt_Pso_k");
                        txtP.Text = dataAccess.GetParameter("Opt_Pso_p");
                        txtW.Text = dataAccess.GetParameter("Opt_Pso_w");
                        txtC.Text = dataAccess.GetParameter("Opt_Pso_c");

                        chkAutoSwarmSize.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_AutoParticles"));
                        chkAutoK.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_AutoK"));
                        chkAutoP.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_AutoP"));
                        chkAutoW.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_AutoW"));
                        chkAutoC.Checked = Convert.ToBoolean(dataAccess.GetParameter("Opt_Pso_AutoC"));
                    }
                    catch (Exception)
                    {
                        Utils.Logger.Log("Warning: Error reading PSO parameters");
                    }

                }

            }
        }
示例#7
0
        private float[] getAverageResults(string filename)
        {
            DataAccess dataAccess = new DataAccess(filename);
            Run[] runs = dataAccess.GetRuns();
            float[][] results = new float[runs.Length][];
            for (int j = 0; j < runs.Length; j++)
            {
                results[j] = dataAccess.GetResults(runs[j]);
            }

            int maxResultLength = 0;
            int mrlIndex = -1;
            for (int j = 0; j < results.Length; j++)
            {
                if (results[j].Length > maxResultLength)
                {
                    maxResultLength = results[j].Length;
                    mrlIndex = j;
                }
            }

            for (int j = 0; j < maxResultLength; j++)
            {
                float total = 0.0f;
                int z = 0;
                for (int k = 0; k < results.Length; k++)
                {
                    if (j < results[k].Length)
                    {
                        total += results[k][j];
                        z++;
                    }
                }

                total /= z;
                if (float.IsNaN(total))
                {
                    throw new Exception("");
                }
                results[mrlIndex][j] = total;
            }

            return results[0];
        }