public override FScheme.Value Evaluate(FSharpList <FScheme.Value> args) { var input = args[0]; //If we are receiving a list, we must create levels for each double in the list. if (input.IsList) { throw new NotImplementedException(); } //If we're not receiving a list, we will just assume we received one double height. else { double x = ((FScheme.Value.Number)input).Item; int i0 = SimplexHelper.FastFloor(x); int i1 = i0 + 1; double x0 = x - i0; double x1 = x0 - 1.0f; double n0, n1; double t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * SimplexHelper.Grad(SimplexHelper.perm[i0 & 0xff], x0); double t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * SimplexHelper.Grad(SimplexHelper.perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return(FScheme.Value.NewNumber(0.395f * (n0 + n1))); } }
public override FScheme.Value Evaluate(FSharpList <FScheme.Value> args) { var xinput = args[0]; var yinput = args[1]; var zinput = args[2]; //If we are receiving a list, we must create levels for each double in the list. if (xinput.IsList || yinput.IsList || zinput.IsList) { throw new NotImplementedException(); } //If we're not receiving a list, we will just assume we received one double height. else { double x = ((FScheme.Value.Number)xinput).Item; double y = ((FScheme.Value.Number)yinput).Item; double z = ((FScheme.Value.Number)zinput).Item; // Simple skewing factors for the 3D case const double F3 = 0.333333333f; const double G3 = 0.166666667f; double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (x + y + z) * F3; // Very nice and simple skew factor for 3D double xs = x + s; double ys = y + s; double zs = z + s; int i = SimplexHelper.FastFloor(xs); int j = SimplexHelper.FastFloor(ys); int k = SimplexHelper.FastFloor(zs); double t = (double)(i + j + k) * G3; double X0 = i - t; // Unskew the cell origin back to (x,y,z) space double Y0 = j - t; double Z0 = k - t; double x0 = x - X0; // The x,y,z distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords double y2 = y0 - j2 + 2.0f * G3; double z2 = z0 - k2 + 2.0f * G3; double x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords double y3 = y0 - 1.0f + 3.0f * G3; double z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners double t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * SimplexHelper.Grad(SimplexHelper.perm[ii + SimplexHelper.perm[jj + SimplexHelper.perm[kk]]], x0, y0, z0); } double t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * SimplexHelper.Grad(SimplexHelper.perm[ii + i1 + SimplexHelper.perm[jj + j1 + SimplexHelper.perm[kk + k1]]], x1, y1, z1); } double t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * SimplexHelper.Grad(SimplexHelper.perm[ii + i2 + SimplexHelper.perm[jj + j2 + SimplexHelper.perm[kk + k2]]], x2, y2, z2); } double t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) { n3 = 0.0f; } else { t3 *= t3; n3 = t3 * t3 * SimplexHelper.Grad(SimplexHelper.perm[ii + 1 + SimplexHelper.perm[jj + 1 + SimplexHelper.perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return(FScheme.Value.NewNumber(32.0f * (n0 + n1 + n2 + n3))); // TODO: The scale factor is preliminary! } }
public override FScheme.Value Evaluate(FSharpList <FScheme.Value> args) { var xinput = args[0]; var yinput = args[1]; //If we are receiving a list, we must create levels for each double in the list. if (xinput.IsList || yinput.IsList) { throw new NotImplementedException(); } //If we're not receiving a list, we will just assume we received one double height. else { double x = ((FScheme.Value.Number)xinput).Item; double y = ((FScheme.Value.Number)yinput).Item; const double F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const double G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 double n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in double s = (x + y) * F2; // Hairy factor for 2D double xs = x + s; double ys = y + s; int i = SimplexHelper.FastFloor(xs); int j = SimplexHelper.FastFloor(ys); double t = (double)(i + j) * G2; double X0 = i - t; // Unskew the cell origin back to (x,y) space double Y0 = j - t; double x0 = x - X0; // The x,y distances from the cell origin double y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners double t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * SimplexHelper.Grad(SimplexHelper.perm[ii + SimplexHelper.perm[jj]], x0, y0); } double t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * SimplexHelper.Grad(SimplexHelper.perm[ii + i1 + SimplexHelper.perm[jj + j1]], x1, y1); } double t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * SimplexHelper.Grad(SimplexHelper.perm[ii + 1 + SimplexHelper.perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return(FScheme.Value.NewNumber(40.0f * (n0 + n1 + n2))); // TODO: The scale factor is preliminary! } }