public static string Create(MethodReference mRef, Resolver resolver, ICode ast) { if (mRef.ContainsGenericParameters()) { throw new ArgumentException("Cannot create JS for method with open generic parameters"); } var mDef = mRef.Resolve(); if (mDef.IsAbstract) { throw new ArgumentException("Should never need to transcode an abstract method"); } var tRef = mRef.DeclaringType; var tDef = tRef.Resolve(); var v = new JsMethod(resolver); v.Visit(ast); var js = v.js.ToString(); var sb = new StringBuilder(); // Method declaration var methodName = resolver.MethodNames[mRef]; //var parameterNames = mRef.Parameters.Select(x => v.parameters.ValueOrDefault(x).NullThru(y => resolver.LocalVarNames[y])).ToArray(); // Match parameters, but have to do by position, as method built may be a custom method replacing a BCL method, // so parameters are not the same. var parameterNames = mRef.Parameters.Select(x => v.parameters.FirstOrDefault(y => y.Key.Sequence == x.Sequence).Value.NullThru(y => resolver.LocalVarNames[y])).ToArray(); if (!mDef.IsStatic) { var thisName = v.vars.FirstOrDefault(x => x.ExprType == Expr.NodeType.VarThis).NullThru(x => resolver.LocalVarNames[x]); parameterNames = parameterNames.Prepend(thisName).ToArray(); } var unusedParameterNameGen = new NameGenerator(); parameterNames = parameterNames.Select(x => x ?? ("_" + unusedParameterNameGen.GetNewName())).ToArray(); sb.AppendFormat("// {0}", mRef.FullName); sb.AppendLine(); sb.AppendFormat("var {0} = function({1}) {{", methodName, string.Join(", ", parameterNames)); // Variable declarations var declVars = v.vars .Select(x => new { name = resolver.LocalVarNames[x], type = x.Type }) .Where(x => !parameterNames.Contains(x.name)) .Select(x => { var name = x.name; if (x.type.IsValueType) { name += " = " + DefaultValuer.Get(x.type, resolver.FieldNames); } return name; }) .Distinct() // Bit of a hack, but works for now .ToArray(); if (declVars.Any()) { sb.AppendLine(); sb.Append(' ', tabSize); sb.AppendFormat("var {0};", string.Join(", ", declVars)); } // Method body sb.AppendLine(js); // Method ending sb.AppendLine("};"); var sbStr = sb.ToString(); return sbStr; }
public void TestGetMany() { var gen = new NameGenerator(); var seen = new HashSet<string>(); int prevLength = 0; for (int i = 0; i < 10000; i++) { var name = gen.GetNewName(); Assert.That(seen.Contains(name), Is.False); Assert.That(name.Length, Is.GreaterThanOrEqualTo(prevLength)); seen.Add(name); prevLength = name.Length; } }
protected override ICode VisitJsDelegateCtor(ExprJsDelegateCtor e) { var methodName = this.resolver.MethodNames[e.Method]; if (e.Obj == null) { this.js.Append(methodName); } else { // TODO improve naming - can share names with enclosing function var nameGen = new NameGenerator(); var argList = string.Join(", ", e.Method.Parameters.Select(x => "_" + nameGen.GetNewName())); this.js.Append("(function("); this.js.Append(argList); this.js.Append(") { "); if (!e.Type.IsVoid()) { this.js.Append("return "); } this.js.Append(methodName); this.js.Append("("); this.Visit(e.Obj); if (argList.Any()) { this.js.Append(", "); this.js.Append(argList); } this.js.Append("); })"); } return(e); }
public static string Create(MethodReference mRef, Resolver resolver, ICode ast) { if (mRef.ContainsGenericParameters()) { throw new ArgumentException("Cannot create JS for method with open generic parameters"); } var mDef = mRef.Resolve(); if (mDef.IsAbstract) { throw new ArgumentException("Should never need to transcode an abstract method"); } var tRef = mRef.DeclaringType; var tDef = tRef.Resolve(); var v = new JsMethod(resolver); v.Visit(ast); var js = v.js.ToString(); var sb = new StringBuilder(); // Method declaration var methodName = resolver.MethodNames[mRef]; //var parameterNames = mRef.Parameters.Select(x => v.parameters.ValueOrDefault(x).NullThru(y => resolver.LocalVarNames[y])).ToArray(); // Match parameters, but have to do by position, as method built may be a custom method replacing a BCL method, // so parameters are not the same. var parameterNames = mRef.Parameters.Select(x => v.parameters.FirstOrDefault(y => y.Key.Sequence == x.Sequence).Value.NullThru(y => resolver.LocalVarNames[y])).ToArray(); if (!mDef.IsStatic) { var thisName = v.vars.FirstOrDefault(x => x.ExprType == Expr.NodeType.VarThis).NullThru(x => resolver.LocalVarNames[x]); parameterNames = parameterNames.Prepend(thisName).ToArray(); } var unusedParameterNameGen = new NameGenerator(); parameterNames = parameterNames.Select(x => x ?? ("_" + unusedParameterNameGen.GetNewName())).ToArray(); sb.AppendFormat("// {0}", mRef.FullName); sb.AppendLine(); sb.AppendFormat("var {0} = function({1}) {{", methodName, string.Join(", ", parameterNames)); // Variable declarations var declVars = v.vars .Select(x => new { name = resolver.LocalVarNames[x], type = x.Type }) .Where(x => !parameterNames.Contains(x.name)) .Select(x => { var name = x.name; if (x.type.IsValueType) { name += " = " + DefaultValuer.Get(x.type, resolver.FieldNames); } return(name); }) .Distinct() // Bit of a hack, but works for now .ToArray(); if (declVars.Any()) { sb.AppendLine(); sb.Append(' ', tabSize); sb.AppendFormat("var {0};", string.Join(", ", declVars)); } // Method body sb.AppendLine(js); // Method ending sb.AppendLine("};"); var sbStr = sb.ToString(); return(sbStr); }
protected override ICode VisitJsDelegateCtor(ExprJsDelegateCtor e) { var methodName = this.resolver.MethodNames[e.Method]; if (e.Obj == null) { this.js.Append(methodName); } else { // TODO improve naming - can share names with enclosing function var nameGen = new NameGenerator(); var argList = string.Join(", ", e.Method.Parameters.Select(x => "_" + nameGen.GetNewName())); this.js.Append("(function("); this.js.Append(argList); this.js.Append(") { "); if (!e.Type.IsVoid()) { this.js.Append("return "); } this.js.Append(methodName); this.js.Append("("); this.Visit(e.Obj); if (argList.Any()) { this.js.Append(", "); this.js.Append(argList); } this.js.Append("); })"); } return e; }
public static JsResult CreateFrom(IEnumerable<MethodReference> rootMethods, bool verbose = false, bool testing = false) { var todo = new Queue<MethodReference>(); foreach (var method in rootMethods) { todo.Enqueue(method); } Action<MethodReference> addTodo = m => { if (m.ContainsGenericParameters()) { throw new Exception("Cannot add todo method with generic parameters"); } todo.Enqueue(m); }; // Each method, with the count of how often it is referenced. var methodsSeen = new Dictionary<MethodReference, int>(rootMethods.ToDictionary(x => x, x => 1), TypeExtensions.MethodRefEqComparerInstance); // Each type, with the count of how often it is referenced directly (newobj only at the moment). var typesSeen = new Dictionary<TypeReference, int>(TypeExtensions.TypeRefEqComparerInstance); // ASTs of all methods var methodAsts = new Dictionary<MethodReference, ICode>(TypeExtensions.MethodRefEqComparerInstance); // Each field, with the count of how often it is referenced. var fieldAccesses = new Dictionary<FieldReference, int>(TypeExtensions.FieldReqEqComparerInstance); // Each type records which virtual methods have their NewSlot definitions var virtualCalls = new Dictionary<TypeReference, HashSet<MethodReference>>(TypeExtensions.TypeRefEqComparerInstance); // Each basemost virtual method records the least-derived type actually called // This allows only virtual methods in more-derived types to be transcoded var virtualCallExactMethods = new Dictionary<MethodReference, IEnumerable<TypeReference>>(TypeExtensions.MethodRefEqComparerInstance); // Each interface type records which interface methods are called var interfaceCalls = new Dictionary<TypeReference, HashSet<MethodReference>>(TypeExtensions.TypeRefEqComparerInstance); // All instance constructors must be updated after all methods have been processed, to initialise all referenced // instance fields in the type, and to sort out 'return' statements. // This has to be done later, so the list of referenced fields in complete var instanceConstructors = new List<Ctx>(); while (todo.Any()) { // TODO: parallelise var mRef = todo.Dequeue(); var mDef = mRef.Resolve(); var tRef = mRef.DeclaringType; var tDef = tRef.Resolve(); var ctx = new Ctx(tRef, mRef); var ast = (ICode)JsResolver.ResolveMethod(ctx); if (ast == null) { var transcodeCtx = JsResolver.TranslateCtx(ctx) ?? ctx; if (transcodeCtx.MRef.ContainsGenericParameters()) { throw new InvalidOperationException("Method/type must not have generic parameters"); } if (transcodeCtx.MDef.IsAbstract) { throw new InvalidOperationException("Cannot transcode an abstract method"); } if (transcodeCtx.MDef.IsInternalCall) { throw new InvalidOperationException("Cannot transcode an internal call"); } if (transcodeCtx.MDef.IsExternal()) { throw new InvalidOperationException("Cannot transcode an external method"); } if (!transcodeCtx.MDef.HasBody) { throw new InvalidOperationException("Cannot transcode method without body"); } if (!typesSeen.ContainsKey(tRef)) { typesSeen.Add(tRef, 0); } ast = Transcoder.ToAst(transcodeCtx, verbose); } for (int i = 0; ; i++) { var astOrg = ast; ast = Transcoder.DoStep(s => (Stmt)VisitorJsRewriteSealedVCalls.V(s), (Stmt)ast, "VisitorJsRewriteSealedVCalls", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveAll.V(s), (Stmt)ast, "VisitorJsResolveAll", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveConv.V(s), (Stmt)ast, "VisitorJsResolveConv", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveSpecialTypes.V(s), (Stmt)ast, "VisitorJsResolveSpecialTypes", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveDelegates.V(s), (Stmt)ast, "VisitorJsResolveDelegates", verbose); // 64bit must be after everything else ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolve64Bit.V(s), (Stmt)ast, "VisitorJsResolve64Bit", verbose); if (ast == astOrg) { break; } if (i > 10) { // After 10 iterations even the most complex method should be sorted out throw new InvalidOperationException("Error: Stuck in loop trying to resolve AST"); } } ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveValueTypes.V(s), (Stmt)ast, "VisitorJsResolveValueTypes", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorIfSimplification.V(s), (Stmt)ast, "VisitorIfSimplification", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveByRefParameters.V(s), (Stmt)ast, "VisitorJsResolveByRefParameters", verbose); if (mDef.IsVirtual && mRef.DeclaringType.IsValueType) { // 'this' may be boxed or unboxed. Must be unboxed if boxed // This is required because in real .NET the boxed and unboxed versions are both directly // available at the this reference; this is not the case in the JS emulation of boxing var unbox = new StmtJsExplicit(ctx, "if (this._) this = this.v;", ctx.ThisNamed); ast = new StmtBlock(ctx, unbox, (Stmt)ast); Transcoder.Print((Stmt)ast, "Unbox-this", verbose); } if (mDef.IsConstructor && !mDef.IsStatic) { // Instance constructor; add instance field initialisation and final return of 'this' later instanceConstructors.Add(ctx); } var cctors = VisitorFindStaticConstructors.V(ast) .Where(x => !TypeExtensions.MethodRefEqComparerInstance.Equals(x, mRef)) .Distinct(TypeExtensions.MethodRefEqComparerInstance) .ToArray(); if (cctors.Any()) { // All methods that access static fields or methods must call the static constructor at the very // start of the method. Except the static construtor itself, which must not recurse into itself. var cctorCalls = cctors .Select(x => new StmtWrapExpr(ctx, new ExprCall(ctx, x, null, Enumerable.Empty<Expr>(), false))).ToArray(); ast = new StmtBlock(ctx, cctorCalls.Concat((Stmt)ast)); Transcoder.Print((Stmt)ast, "Call-cctors", verbose); } if (mDef.IsConstructor && mDef.IsStatic) { // At the beginning of the static constructor, it rewrites itself as an empty function, so it is only called once. var rewrite = new StmtAssignment(ctx, new ExprJsVarMethodReference(ctx, mRef), new ExprJsEmptyFunction(ctx)); ast = new StmtBlock(ctx, rewrite, (Stmt)ast); Transcoder.Print((Stmt)ast, "cctor-once-only", verbose); } methodAsts.Add(mRef, ast); var fieldRefs = VisitorFindFieldAccesses.V(ast); foreach (var fieldRef in fieldRefs) { fieldAccesses[fieldRef] = fieldAccesses.ValueOrDefault(fieldRef) + 1; } var arrayRefs = VisitorFindNewArrays.V(ast); foreach (var arrayRef in arrayRefs) { typesSeen[arrayRef] = typesSeen.ValueOrDefault(arrayRef) + 1; } var types = VisitorFindRequiredTypes.V(ast); foreach (var type in types) { typesSeen[type] = typesSeen.ValueOrDefault(type) + 1; } if (mDef.GetCustomAttribute<JsReturnTypeDeepUseAttribute>(true) != null) { var retType = mDef.ReturnType.FullResolve(ctx); var retTypes = retType.EnumThisAllContainedTypes().ToArray(); foreach (var type in retTypes) { typesSeen[type] = typesSeen.ValueOrDefault(type) + 1; if (type.IsGenericInstance && type.Resolve().FullName == "System.Collections.Generic.Dictionary`2") { // HACK - ensure no-arg ctor is present. JSON needs it var ctor = type.EnumResolvedMethods().First(x => x.Name == ".ctor" && !x.HasParameters); if (!methodsSeen.ContainsKey(ctor)) { methodsSeen.Add(ctor, 1); addTodo(ctor); } // HACK - ensure Add(key, value) method present. JSON need sit var mAdd = type.EnumResolvedMethods().First(x => x.Name == "Add"); if (!methodsSeen.ContainsKey(mAdd)) { methodsSeen.Add(mAdd, 1); addTodo(mAdd); } } } } var calledMethods = new List<ICall>(); var calls = VisitorFindCalls.V(ast); foreach (var call in calls.Where(x => x.ExprType == Expr.NodeType.NewObj || x.IsVirtualCall)) { // Add reference to each type constructed (direct access to type variable) typesSeen[call.Type] = typesSeen.ValueOrDefault(call.Type) + 1; } foreach (var call in calls) { if (call.CallMethod.DeclaringType.Resolve().IsInterface) { var methodSet = interfaceCalls.ValueOrDefault(call.CallMethod.DeclaringType, () => new HashSet<MethodReference>(TypeExtensions.MethodRefEqComparerInstance), true); methodSet.Add(call.CallMethod); // Methods that require transcoding are added to 'todo' later continue; } if (call.IsVirtualCall) { var mBasemost = call.CallMethod.GetBasemostMethod(null); var methodSet = virtualCalls.ValueOrDefault(mBasemost.DeclaringType, () => new HashSet<MethodReference>(TypeExtensions.MethodRefEqComparerInstance), true); methodSet.Add(mBasemost); var objType = call.Obj.Type; var already = virtualCallExactMethods.ValueOrDefault(mBasemost).EmptyIfNull(); if (!already.Any(x => x.IsBaseOfOrEqual(objType))) { virtualCallExactMethods[mBasemost] = already.Concat(objType).ToArray(); } // Methods that require transcoding are added to 'todo' later continue; } calledMethods.Add(call); } foreach (var call in calledMethods) { if (methodsSeen.ContainsKey(call.CallMethod)) { methodsSeen[call.CallMethod]++; } else { methodsSeen.Add(call.CallMethod, 1); //todo.Enqueue(call.CallMethod); addTodo(call.CallMethod); } } if (!todo.Any()) { // Add System.RuntimeType if any types have been seen if (typesSeen.Any(x => x.Value > 0) && !typesSeen.Any(x => x.Key.FullName == "System.RuntimeType")) { var runtimeType = ctx.Module.Import(Type.GetType("System.RuntimeType")); typesSeen.Add(runtimeType, 1); } // Scan all virtual calls and add any required methods // Need care to handle virtual methods with generic arguments var virtualRoots = new HashSet<MethodReference>(virtualCalls.SelectMany(x => x.Value), TypeExtensions.MethodRefEqComparerInstance); var requireMethods = from type in typesSeen.Keys //let typeReverseMapped = JsResolver.ReverseTypeMap(type) let typeAndBases = type.EnumThisAllBaseTypes().ToArray() let mVRoots = typeAndBases.SelectMany(x => virtualCalls.ValueOrDefault(x).EmptyIfNull()).ToArray() let methods = type.EnumResolvedMethods(mVRoots).ToArray() from method in methods//.Select(x => JsResolver.ResolveMethod(x)) let methodDef = method.Resolve() where methodDef != null // HACK? where !methodDef.IsStatic && methodDef.IsVirtual && !methodDef.IsAbstract where !methodsSeen.ContainsKey(method) let mBasemost = method.GetBasemostMethod(method) where virtualCallExactMethods.ValueOrDefault(mBasemost).EmptyIfNull().Any(x => { //return x.IsBaseOfOrEqual(typeReverseMapped) || typeReverseMapped.IsBaseOfOrEqual(x); return x.IsBaseOfOrEqual(type) || type.IsBaseOfOrEqual(x); }) where virtualRoots.Contains(mBasemost) select method; var requireMethodsArray = requireMethods.Distinct(TypeExtensions.MethodRefEqComparerInstance).ToArray(); foreach (var method in requireMethodsArray) { methodsSeen.Add(method, 1); // TODO: How to properly handle count? //todo.Enqueue(method); addTodo(method); } // Scan all interface calls and add any required methods var iFaceMethods = from type in typesSeen.Keys from iFace in interfaceCalls let iFaceType = iFace.Key let typeAndBases = type.EnumThisAllBaseTypes().ToArray() where typeAndBases.Any(x => x.DoesImplement(iFaceType)) let methods = typeAndBases.SelectMany(x => x.EnumResolvedMethods(iFace.Value)).ToArray() from method in methods//.Select(x => JsResolver.ResolveMethod(x)) where !methodsSeen.ContainsKey(method) let methodDef = method.Resolve() where methodDef != null // HACK? where !methodDef.IsStatic && methodDef.IsVirtual && !methodDef.IsAbstract from iFaceMethod in iFace.Value where method.IsImplementationOf(iFaceMethod) select method; var iFaceMethodsArray = iFaceMethods.Distinct(TypeExtensions.MethodRefEqComparerInstance).ToArray(); foreach (var method in iFaceMethodsArray) { methodsSeen.Add(method, 1); addTodo(method); //todo.Enqueue(method); } } } // Add type count to System.RuntimeType var runtimeTypeInc = typesSeen.Keys.FirstOrDefault(x => x.FullName == "System.RuntimeType"); if (runtimeTypeInc != null) { typesSeen[runtimeTypeInc] += 2; } var instanceFieldsByType = fieldAccesses .Where(x => !x.Key.Resolve().IsStatic) .ToLookup(x => x.Key.DeclaringType.FullResolve(x.Key), TypeExtensions.TypeRefEqComparerInstance); // Update all instance constructors to initialise instance fields, add final 'return' statement, // and update any early returns to return 'this' foreach (var ctx in instanceConstructors) { var fields = instanceFieldsByType[ctx.TRef].Select(x => x.Key); var initStmts = fields.Select(x => { var f = x.FullResolve(ctx.TRef, ctx.MRef); var assign = new StmtAssignment(ctx, new ExprFieldAccess(ctx, ctx.This, f), new ExprDefaultValue(ctx, f.FieldType)); return assign; }).ToArray(); var returnStmt = new StmtReturn(ctx, ctx.This); var ast = methodAsts[ctx.MRef]; ast = new StmtBlock(ctx, initStmts.Concat((Stmt)ast).Concat(returnStmt)); ast = VisitorJsReturnThis.V(ast, ctx.This); methodAsts[ctx.MRef] = ast; } // Locally name all instance fields; base type names must not be re-used in derived types var instanceFieldsIndexed = new Dictionary<int, Tuple<IEnumerable<FieldReference>, int>>(); // <index, Tuple<all fields, total use count>> instanceFieldsByType.TypeTreeTraverse(x => x.Key, (fields, idx) => { var ordered = fields.OrderByDescending(x => x.Value).ToArray(); // Order by usage count, highest first foreach (var field in ordered) { var idxInfo = instanceFieldsIndexed.ValueOrDefault(idx, () => Tuple.Create(Enumerable.Empty<FieldReference>(), 0)); var newIdxInfo = Tuple.Create((IEnumerable<FieldReference>)idxInfo.Item1.Concat(field.Key).ToArray(), idxInfo.Item2 + field.Value); instanceFieldsIndexed[idx] = newIdxInfo; idx++; } return idx; }, 0); var orderedInstanceFields = instanceFieldsIndexed.OrderByDescending(x => x.Value.Item2).ToArray(); var instanceFieldNameGen = new NameGenerator(); var instanceFieldNames = orderedInstanceFields .Select(x => new { name = instanceFieldNameGen.GetNewName(), fields = x.Value.Item1 }) .SelectMany(x => x.fields.Select(y => new { f = y, name = x.name })) .ToArray(); // Prepare list of static fields for global naming var staticFields = fieldAccesses.Where(x => x.Key.Resolve().IsStatic).ToArray(); // Prepare local variables for global naming. // All locals in all methods are sorted by usage count, then all methods usage counts are combined var clusters = methodAsts.Values.SelectMany(x => VisitorJsPhiClusters.V(x).Select(y => new ExprVarCluster(y))).ToArray(); var varToCluster = clusters.SelectMany(x => x.Vars.Select(y => new { cluster = x, var = y })).ToDictionary(x => x.var, x => x.cluster); var varsWithCount = methodAsts.Values.Select(x => { var methodVars = VisitorFindVars.V(x); // Parameters need one extra count, as they appear in the method declaration methodVars = methodVars.Concat(methodVars.Where(y => y.ExprType == Expr.NodeType.VarParameter).Distinct()); var ret = methodVars.Select(y => varToCluster.ValueOrDefault(y) ?? y) .GroupBy(y => y) .Select(y => new { var = y.Key, count = y.Count() }) .OrderByDescending(y => y.count) .ToArray(); return ret; }).ToArray(); var localVarCounts = new Dictionary<int, int>(); foreach (var x in varsWithCount) { for (int i = 0; i < x.Length; i++) { localVarCounts[i] = localVarCounts.ValueOrDefault(i) + x[i].count; } } // Globally name all items that require names var needNaming = localVarCounts.Select(x => new { item = (object)x.Key, count = x.Value }) .Concat(methodsSeen.Select(x => new { item = (object)x.Key, count = x.Value })) .Concat(staticFields.Select(x => new { item = (object)x.Key, count = x.Value })) .Concat(typesSeen.Select(x => new { item = (object)x.Key, count = x.Value })) .Where(x => x.count > 0) .OrderByDescending(x => x.count) .ToArray(); var nameGen = new NameGenerator(); var globalNames = needNaming.ToDictionary(x => x.item, x => nameGen.GetNewName()); // Create map of all local variables to their names var localVarNames = varsWithCount.Select(x => x.Select((y, i) => new { y.var, name = globalNames[i] })) .SelectMany(x => x) .SelectMany(x => { var varCluster = x.var as ExprVarCluster; if (varCluster != null) { return varCluster.Vars.Select(y => new { var = y, name = x.name }); } else { return new[] { x }; } }) .ToDictionary(x => x.var, x => x.name); // Create map of all method names var methodNames = methodsSeen.Keys.ToDictionary(x => x, x => globalNames[x], TypeExtensions.MethodRefEqComparerInstance); // Create list of all static field names var staticFieldNames = staticFields.Select(x => new { f = x.Key, name = globalNames[x.Key] }); // Create map of all fields if (testing) { instanceFieldNames = instanceFieldNames.Select(x => { switch (x.f.FullName) { case "System.String System.Exception::_message": return new { x.f, name = "$$_message" }; } return x; }).ToArray(); } var fieldNames = instanceFieldNames.Concat(staticFieldNames).ToDictionary(x => x.f, x => x.name, TypeExtensions.FieldReqEqComparerInstance); // Create map of type names var typeNames = typesSeen .Where(x => x.Value > 0) .ToDictionary(x => x.Key, x => globalNames[x.Key], TypeExtensions.TypeRefEqComparerInstance); // Create virtual call tables var virtualCallIndices = new Dictionary<MethodReference, int>(TypeExtensions.MethodRefEqComparerInstance); var allVirtualMethods = new Dictionary<TypeReference, HashSet<MethodReference>>(TypeExtensions.TypeRefEqComparerInstance); typesSeen.Select(x => x.Key).TypeTreeTraverse(x => x, (type, vCalls) => { var mNewSlots = virtualCalls.ValueOrDefault(type).EmptyIfNull().ToArray(); int idx = vCalls.Length; foreach (var mNewSlot in mNewSlots) { virtualCallIndices[mNewSlot] = idx++; } var vCallsWithThisType = vCalls.Concat(mNewSlots).ToArray(); if (vCallsWithThisType.Length > 0) { var typesAndBases = type.EnumThisAllBaseTypes().ToArray(); var mVRoots = typesAndBases.SelectMany(x => virtualCalls.ValueOrDefault(x).EmptyIfNull()).ToArray(); var ms = type.EnumResolvedMethods(mVRoots).ToArray(); for (int i = 0; i < vCalls.Length; i++) { var mVCall = vCallsWithThisType[i]; foreach (var m in ms) { if (m.MatchMethodOnly(mVCall)) { vCallsWithThisType[i] = m; } } } var typeVMethods = new HashSet<MethodReference>(vCallsWithThisType, TypeExtensions.MethodRefEqComparerInstance); allVirtualMethods.Add(type, typeVMethods); } return vCallsWithThisType; }, new MethodReference[0]); var typeData = Enum.GetValues(typeof(TypeData)).Cast<TypeData>().ToArray(); // Name all items that are within the type information var needTypeInformationNaming = interfaceCalls.Select(x => new { item = (object)x.Key, count = 1 }) .Concat(typeData.Select(x => new { item = (object)x, count = 1 })) .OrderByDescending(x => x.count) .ToArray(); var typeInformationNameGen = new NameGenerator(); var typeInformationNames = needTypeInformationNaming.ToDictionary(x => x.item, x => typeInformationNameGen.GetNewName()); if (testing) { typeInformationNames[TypeData.Name] = "$$TypeName"; typeInformationNames[TypeData.Namespace] = "$$TypeNamespace"; } // Create map of interfaces to their names var interfaceNames = interfaceCalls.Keys.ToDictionary(x => x, x => typeInformationNames[x], TypeExtensions.TypeRefEqComparerInstance); var interfaceCallIndices = interfaceCalls.SelectMany(x => x.Value.Select((m, i) => new { m, i })).ToDictionary(x => x.m, x => x.i, TypeExtensions.MethodRefEqComparerInstance); // Create map of type data constants var typeDataNames = typeData.ToDictionary(x => x, x => typeInformationNames[x]); var resolver = new JsMethod.Resolver { LocalVarNames = localVarNames, MethodNames = methodNames, FieldNames = fieldNames, TypeNames = typeNames, VirtualCallIndices = virtualCallIndices, InterfaceCallIndices = interfaceCallIndices, InterfaceNames = interfaceNames, TypeDataNames = typeDataNames, }; var js = new StringBuilder(); js.Append("(function(){"); int jsIndent = 1; Action jsNewLine = () => { js.AppendLine(); js.Append(' ', jsIndent * JsMethod.tabSize); }; jsNewLine(); js.Append("\"use strict\";"); jsNewLine(); // Construct methods foreach (var methodInfo in methodAsts) { var mRef = methodInfo.Key; var ast = methodInfo.Value; var mJs = JsMethod.Create(mRef, resolver, ast); var mJsLines = mJs.Split(new[] { Environment.NewLine }, StringSplitOptions.None); foreach (var line in mJsLines) { jsNewLine(); js.Append(line); } } // Construct static fields foreach (var field in staticFields.Select(x => x.Key)) { jsNewLine(); js.AppendFormat("// {0}", field.FullName); jsNewLine(); if (field.Name == "Empty" && field.DeclaringType.FullName == "System.String") { // Special case, as string does not have a static constructor to set String.Empty js.AppendFormat("var {0} = \"\";", fieldNames[field]); } else { js.AppendFormat("var {0} = {1};", fieldNames[field], DefaultValuer.Get(field.FieldType, fieldNames)); } } // Construct type data var typesSeenOrdered = typesSeen .Where(x => x.Value > 0) .Select(x => x.Key) .OrderByReferencedFirst(x => x) .ToArray(); var domTypes = new Dictionary<string, TypeReference>(); foreach (var type in typesSeenOrdered) { var unmappedType = type; var tDef = unmappedType.Resolve(); // Check for DOM types var jsClassAttr = tDef.GetCustomAttribute<JsClassAttribute>(); if (jsClassAttr != null) { if (jsClassAttr.ConstructorArguments.Count == 1) { // Non-abstract types only var tagOrConstructorName = (string)jsClassAttr.ConstructorArguments[0].Value; domTypes.Add(tagOrConstructorName, unmappedType); } } // Type JS jsNewLine(); js.AppendFormat("// {0}", unmappedType.FullName); jsNewLine(); js.AppendFormat("var {0}={{", typeNames[type]); // Type information js.AppendFormat("{0}:\"{1}\"", typeDataNames[TypeData.JsName], typeNames[type]); js.AppendFormat(", {0}:\"{1}\"", typeDataNames[TypeData.Name], unmappedType.Name()); js.AppendFormat(", {0}:\"{1}\"", typeDataNames[TypeData.Namespace], unmappedType.Namespace); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsValueType], unmappedType.IsValueType ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsPrimitive], unmappedType.IsPrimitive ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsArray], unmappedType.IsArray ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.ElementType], unmappedType.IsArray ? typeNames.ValueOrDefault(((ArrayType)unmappedType).ElementType, "null") : "null"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsInterface], tDef.IsInterface ? "true" : "false"); var assignableTo = typesSeenOrdered.Where(x => unmappedType.IsAssignableTo(x)).Where(x => !x.IsSame(unmappedType)).ToArray(); js.AppendFormat(", {0}:[{1}]", typeDataNames[TypeData.AssignableTo], string.Join(", ", assignableTo.Select(x => typeNames[x]))); if (tDef.FullName == "System.Collections.Generic.Dictionary`2") { var typeGen = (GenericInstanceType)type; var dict = tDef.Module.Import(typeof(DotNetWebToolkit.Cil2Js.JsResolvers.Classes._Dictionary<,>)); var dictGen = dict.MakeGeneric(typeGen.GenericArguments[0], typeGen.GenericArguments[1]); var jsSlotsName = fieldNames[dictGen.EnumResolvedFields().First(x => x.Name == "slots")]; var slot = dictGen.Resolve().NestedTypes.First(x => x.Name == "Slot"); var slotGen = slot.MakeGeneric(typeGen.GenericArguments[0], typeGen.GenericArguments[1]); var jsHashCodeName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "hashCode")]; var jskeyName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "key")]; var jsValueName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "value")]; js.AppendFormat(", {0}:['{1}','{2}','{3}','{4}']", typeDataNames[TypeData.IsDictionary], jsSlotsName, jsHashCodeName, jskeyName, jsValueName); } if (!tDef.IsInterface) { if (!tDef.IsAbstract) { // Virtual method table, only needed on concrete types var typeAndBases = type.EnumThisAllBaseTypes().ToArray(); var methods = allVirtualMethods.ValueOrDefault(type); if (methods != null) { var idxs = methods .Select(x => { var xBasemost = x.GetBasemostMethod(x); return new { m = x, idx = virtualCallIndices[xBasemost] }; }) .OrderBy(x => x.idx) .ToArray(); var s = string.Join(", ", idxs.Select(x => methodNames.ValueOrDefault(x.m, "null"))); js.AppendFormat(", {0}:[{1}]", typeDataNames[TypeData.VTable], s); } // Interface tables, only needed on concrete types var implementedIFaces = interfaceCalls.Where(x => typeAndBases.Any(y => y.DoesImplement(x.Key))).ToArray(); foreach (var iFace in implementedIFaces) { js.Append(", "); var iFaceName = interfaceNames[iFace.Key]; js.AppendFormat("{0}:[", iFaceName); var qInterfaceTableNames = from iMethod in iFace.Value let tMethod = typeAndBases.SelectMany(x => x.EnumResolvedMethods(iMethod)).First(x => x.IsImplementationOf(iMethod)) //let tM2 = JsResolver.ResolveMethod(tMethod) let idx = interfaceCallIndices[iMethod] orderby idx let methodName = methodNames[tMethod] select methodName; var interfaceTableNames = qInterfaceTableNames.ToArray(); js.Append(string.Join(", ", interfaceTableNames)); js.Append("]"); } } } if (tDef.IsEnum && tDef.GetCustomAttribute<JsStringEnumAttribute>() != null) { // JS string/enum map var values = tDef.Fields.Where(x => x.IsLiteral).Select(x => { return string.Format("{0}:\"{1}\",\"{1}\":{0}", x.Constant, JsResolver.JsName(x)); }).ToArray(); js.AppendFormat(", {0}:{{{1}}}", typeDataNames[TypeData.EnumStringMap], string.Join(", ", values)); } // end js.Append("};"); } // Add type of each type, if System.RuntimeType has been seen var typeRuntimeType = typesSeen.Keys.FirstOrDefault(x => x.FullName == "System.RuntimeType"); if (typeRuntimeType != null) { jsNewLine(); foreach (var type in typesSeenOrdered) { js.Append(typeNames[type]); js.Append("._ = "); } js.Append(typeNames[typeRuntimeType]); js.Append(";"); } // Add comments descibing each interface jsNewLine(); js.Append("// Interface name map"); jsNewLine(); js.AppendFormat("// {0} = VTable", typeDataNames[TypeData.VTable]); foreach (var iFace in interfaceNames) { jsNewLine(); js.AppendFormat("// {0} = {1}", iFace.Value, iFace.Key.FullName); } // Add map of DOM types if (domTypes.Any()) { jsNewLine(); js.Append("// DOM type mapping"); jsNewLine(); // TODO: Auto-name this js.Append("var __ = {"); jsIndent++; foreach (var domType in domTypes) { jsNewLine(); js.AppendFormat("'{0}': {1},", domType.Key, typeNames[domType.Value]); } js.Length--; jsIndent--; jsNewLine(); js.Append("};"); } if (typesSeenOrdered.Any()) { jsNewLine(); js.Append("// json type mapping"); jsNewLine(); // TODO: Auto-name this js.Append("var $$ = {"); foreach (var type in typesSeenOrdered) { js.AppendFormat("'{0}':{0},", typeNames[type]); } js.Length--; js.Append("};"); var typesDicts = typesSeenOrdered .Where(x => x.IsGenericInstance && x.Resolve().FullName == "System.Collections.Generic.Dictionary`2") .ToArray(); if (typesDicts.Any()) { jsNewLine(); js.Append("// json dictionary info"); jsNewLine(); // TODO: Auto-name or get rid of this js.Append("var $d = {"); var any = false; foreach (var type in typesDicts) { var typeName = typeNames[type]; var ctor = type.EnumResolvedMethods().First(x => x.Name == ".ctor" && !x.HasParameters); var mAdd = type.EnumResolvedMethods().First(x => x.Name == "Add"); // If dict not involved in JSON, these methods may not be present if (methodNames.ContainsKey(ctor) && methodNames.ContainsKey(mAdd)) { var ctorName = methodNames[ctor]; var mAddName = methodNames[mAdd]; js.AppendFormat("'{0}':[{1},{2}],", typeName, ctorName, mAddName); any = true; } } if (any) { js.Length--; } js.Append("};"); } } jsNewLine(); jsNewLine(); js.Append("// Exports"); if (!testing) { var rootMethodsByType = rootMethods.ToLookup(x => x.DeclaringType, TypeExtensions.TypeRefEqComparerInstance); Action<NamespaceTree> treeToJs = null; treeToJs = tree => { js.Append("{"); jsIndent++; foreach (var subNs in tree.Namespaces) { jsNewLine(); js.AppendFormat("'{0}': ", subNs.NamespacePart); treeToJs(subNs); } if (tree.Types.Any()) { foreach (var type in tree.Types) { jsNewLine(); js.AppendFormat("'{0}': {{", type.Name); jsIndent++; foreach (var method in rootMethodsByType[type]) { jsNewLine(); js.AppendFormat("'{0}': {1},", method.Name, methodNames[method]); } js.Length--; jsIndent--; jsNewLine(); js.Append("},"); } js.Length--; } jsIndent--; jsNewLine(); js.Append("}"); }; var trees = NamespaceTree.Make(rootMethodsByType.Select(x => x.Key)); foreach (var tree in trees) { jsNewLine(); js.AppendFormat("window['{0}'] = ", tree.NamespacePart); treeToJs(tree); js.Append(";"); } } else { jsNewLine(); js.AppendFormat("window['main'] = {0};", methodNames[rootMethods.First()]); } jsIndent--; jsNewLine(); jsNewLine(); js.Append("})();"); var jsStr = js.ToString(); //Console.WriteLine(jsStr); var qFieldMap = from fieldName in fieldNames let declType = fieldName.Key.DeclaringType let declTypeMapped = JsResolver.TypeMapReverse(declType) ?? declType let declTypeName = declTypeMapped.AssemblyQualifiedName() where declType != null group fieldName by declTypeName; var fieldMap = qFieldMap.ToDictionary(x => x.Key, x => x.ToDictionary(y => y.Key.Name, y => y.Value)); var qTypeMap = from typeName in typeNames let type = typeName.Key.AssemblyQualifiedName() where type != null select new { type, typeName.Value }; var ttt = qTypeMap.ToArray(); var typeMap = ttt.ToDictionary(x => x.type, x => x.Value); var jsTypeMap = new JsonTypeMap(typeMap, fieldMap); return new JsResult(jsStr, jsTypeMap); }
public static JsResult CreateFrom(IEnumerable <MethodReference> rootMethods, bool verbose = false, bool testing = false) { var todo = new Queue <MethodReference>(); foreach (var method in rootMethods) { todo.Enqueue(method); } Action <MethodReference> addTodo = m => { if (m.ContainsGenericParameters()) { throw new Exception("Cannot add todo method with generic parameters"); } todo.Enqueue(m); }; // Each method, with the count of how often it is referenced. var methodsSeen = new Dictionary <MethodReference, int>(rootMethods.ToDictionary(x => x, x => 1), TypeExtensions.MethodRefEqComparerInstance); // Each type, with the count of how often it is referenced directly (newobj only at the moment). var typesSeen = new Dictionary <TypeReference, int>(TypeExtensions.TypeRefEqComparerInstance); // ASTs of all methods var methodAsts = new Dictionary <MethodReference, ICode>(TypeExtensions.MethodRefEqComparerInstance); // Each field, with the count of how often it is referenced. var fieldAccesses = new Dictionary <FieldReference, int>(TypeExtensions.FieldReqEqComparerInstance); // Each type records which virtual methods have their NewSlot definitions var virtualCalls = new Dictionary <TypeReference, HashSet <MethodReference> >(TypeExtensions.TypeRefEqComparerInstance); // Each basemost virtual method records the least-derived type actually called // This allows only virtual methods in more-derived types to be transcoded var virtualCallExactMethods = new Dictionary <MethodReference, IEnumerable <TypeReference> >(TypeExtensions.MethodRefEqComparerInstance); // Each interface type records which interface methods are called var interfaceCalls = new Dictionary <TypeReference, HashSet <MethodReference> >(TypeExtensions.TypeRefEqComparerInstance); // All instance constructors must be updated after all methods have been processed, to initialise all referenced // instance fields in the type, and to sort out 'return' statements. // This has to be done later, so the list of referenced fields in complete var instanceConstructors = new List <Ctx>(); while (todo.Any()) { // TODO: parallelise var mRef = todo.Dequeue(); var mDef = mRef.Resolve(); var tRef = mRef.DeclaringType; var tDef = tRef.Resolve(); var ctx = new Ctx(tRef, mRef); var ast = (ICode)JsResolver.ResolveMethod(ctx); if (ast == null) { var transcodeCtx = JsResolver.TranslateCtx(ctx) ?? ctx; if (transcodeCtx.MRef.ContainsGenericParameters()) { throw new InvalidOperationException("Method/type must not have generic parameters"); } if (transcodeCtx.MDef.IsAbstract) { throw new InvalidOperationException("Cannot transcode an abstract method"); } if (transcodeCtx.MDef.IsInternalCall) { throw new InvalidOperationException("Cannot transcode an internal call"); } if (transcodeCtx.MDef.IsExternal()) { throw new InvalidOperationException("Cannot transcode an external method"); } if (!transcodeCtx.MDef.HasBody) { throw new InvalidOperationException("Cannot transcode method without body"); } if (!typesSeen.ContainsKey(tRef)) { typesSeen.Add(tRef, 0); } ast = Transcoder.ToAst(transcodeCtx, verbose); } for (int i = 0; ; i++) { var astOrg = ast; ast = Transcoder.DoStep(s => (Stmt)VisitorJsRewriteSealedVCalls.V(s), (Stmt)ast, "VisitorJsRewriteSealedVCalls", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveAll.V(s), (Stmt)ast, "VisitorJsResolveAll", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveConv.V(s), (Stmt)ast, "VisitorJsResolveConv", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveSpecialTypes.V(s), (Stmt)ast, "VisitorJsResolveSpecialTypes", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveDelegates.V(s), (Stmt)ast, "VisitorJsResolveDelegates", verbose); // 64bit must be after everything else ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolve64Bit.V(s), (Stmt)ast, "VisitorJsResolve64Bit", verbose); if (ast == astOrg) { break; } if (i > 10) { // After 10 iterations even the most complex method should be sorted out throw new InvalidOperationException("Error: Stuck in loop trying to resolve AST"); } } ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveValueTypes.V(s), (Stmt)ast, "VisitorJsResolveValueTypes", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorIfSimplification.V(s), (Stmt)ast, "VisitorIfSimplification", verbose); ast = Transcoder.DoStep(s => (Stmt)VisitorJsResolveByRefParameters.V(s), (Stmt)ast, "VisitorJsResolveByRefParameters", verbose); if (mDef.IsVirtual && mRef.DeclaringType.IsValueType) { // 'this' may be boxed or unboxed. Must be unboxed if boxed // This is required because in real .NET the boxed and unboxed versions are both directly // available at the this reference; this is not the case in the JS emulation of boxing var unbox = new StmtJsExplicit(ctx, "if (this._) this = this.v;", ctx.ThisNamed); ast = new StmtBlock(ctx, unbox, (Stmt)ast); Transcoder.Print((Stmt)ast, "Unbox-this", verbose); } if (mDef.IsConstructor && !mDef.IsStatic) { // Instance constructor; add instance field initialisation and final return of 'this' later instanceConstructors.Add(ctx); } var cctors = VisitorFindStaticConstructors.V(ast) .Where(x => !TypeExtensions.MethodRefEqComparerInstance.Equals(x, mRef)) .Distinct(TypeExtensions.MethodRefEqComparerInstance) .ToArray(); if (cctors.Any()) { // All methods that access static fields or methods must call the static constructor at the very // start of the method. Except the static construtor itself, which must not recurse into itself. var cctorCalls = cctors .Select(x => new StmtWrapExpr(ctx, new ExprCall(ctx, x, null, Enumerable.Empty <Expr>(), false))).ToArray(); ast = new StmtBlock(ctx, cctorCalls.Concat((Stmt)ast)); Transcoder.Print((Stmt)ast, "Call-cctors", verbose); } if (mDef.IsConstructor && mDef.IsStatic) { // At the beginning of the static constructor, it rewrites itself as an empty function, so it is only called once. var rewrite = new StmtAssignment(ctx, new ExprJsVarMethodReference(ctx, mRef), new ExprJsEmptyFunction(ctx)); ast = new StmtBlock(ctx, rewrite, (Stmt)ast); Transcoder.Print((Stmt)ast, "cctor-once-only", verbose); } methodAsts.Add(mRef, ast); var fieldRefs = VisitorFindFieldAccesses.V(ast); foreach (var fieldRef in fieldRefs) { fieldAccesses[fieldRef] = fieldAccesses.ValueOrDefault(fieldRef) + 1; } var arrayRefs = VisitorFindNewArrays.V(ast); foreach (var arrayRef in arrayRefs) { typesSeen[arrayRef] = typesSeen.ValueOrDefault(arrayRef) + 1; } var types = VisitorFindRequiredTypes.V(ast); foreach (var type in types) { typesSeen[type] = typesSeen.ValueOrDefault(type) + 1; } if (mDef.GetCustomAttribute <JsReturnTypeDeepUseAttribute>(true) != null) { var retType = mDef.ReturnType.FullResolve(ctx); var retTypes = retType.EnumThisAllContainedTypes().ToArray(); foreach (var type in retTypes) { typesSeen[type] = typesSeen.ValueOrDefault(type) + 1; if (type.IsGenericInstance && type.Resolve().FullName == "System.Collections.Generic.Dictionary`2") { // HACK - ensure no-arg ctor is present. JSON needs it var ctor = type.EnumResolvedMethods().First(x => x.Name == ".ctor" && !x.HasParameters); if (!methodsSeen.ContainsKey(ctor)) { methodsSeen.Add(ctor, 1); addTodo(ctor); } // HACK - ensure Add(key, value) method present. JSON need sit var mAdd = type.EnumResolvedMethods().First(x => x.Name == "Add"); if (!methodsSeen.ContainsKey(mAdd)) { methodsSeen.Add(mAdd, 1); addTodo(mAdd); } } } } var calledMethods = new List <ICall>(); var calls = VisitorFindCalls.V(ast); foreach (var call in calls.Where(x => x.ExprType == Expr.NodeType.NewObj || x.IsVirtualCall)) { // Add reference to each type constructed (direct access to type variable) typesSeen[call.Type] = typesSeen.ValueOrDefault(call.Type) + 1; } foreach (var call in calls) { if (call.CallMethod.DeclaringType.Resolve().IsInterface) { var methodSet = interfaceCalls.ValueOrDefault(call.CallMethod.DeclaringType, () => new HashSet <MethodReference>(TypeExtensions.MethodRefEqComparerInstance), true); methodSet.Add(call.CallMethod); // Methods that require transcoding are added to 'todo' later continue; } if (call.IsVirtualCall) { var mBasemost = call.CallMethod.GetBasemostMethod(null); var methodSet = virtualCalls.ValueOrDefault(mBasemost.DeclaringType, () => new HashSet <MethodReference>(TypeExtensions.MethodRefEqComparerInstance), true); methodSet.Add(mBasemost); var objType = call.Obj.Type; var already = virtualCallExactMethods.ValueOrDefault(mBasemost).EmptyIfNull(); if (!already.Any(x => x.IsBaseOfOrEqual(objType))) { virtualCallExactMethods[mBasemost] = already.Concat(objType).ToArray(); } // Methods that require transcoding are added to 'todo' later continue; } calledMethods.Add(call); } foreach (var call in calledMethods) { if (methodsSeen.ContainsKey(call.CallMethod)) { methodsSeen[call.CallMethod]++; } else { methodsSeen.Add(call.CallMethod, 1); //todo.Enqueue(call.CallMethod); addTodo(call.CallMethod); } } if (!todo.Any()) { // Add System.RuntimeType if any types have been seen if (typesSeen.Any(x => x.Value > 0) && !typesSeen.Any(x => x.Key.FullName == "System.RuntimeType")) { var runtimeType = ctx.Module.Import(Type.GetType("System.RuntimeType")); typesSeen.Add(runtimeType, 1); } // Scan all virtual calls and add any required methods // Need care to handle virtual methods with generic arguments var virtualRoots = new HashSet <MethodReference>(virtualCalls.SelectMany(x => x.Value), TypeExtensions.MethodRefEqComparerInstance); var requireMethods = from type in typesSeen.Keys //let typeReverseMapped = JsResolver.ReverseTypeMap(type) let typeAndBases = type.EnumThisAllBaseTypes().ToArray() let mVRoots = typeAndBases.SelectMany(x => virtualCalls.ValueOrDefault(x).EmptyIfNull()).ToArray() let methods = type.EnumResolvedMethods(mVRoots).ToArray() from method in methods //.Select(x => JsResolver.ResolveMethod(x)) let methodDef = method.Resolve() where methodDef != null // HACK? where !methodDef.IsStatic && methodDef.IsVirtual && !methodDef.IsAbstract where !methodsSeen.ContainsKey(method) let mBasemost = method.GetBasemostMethod(method) where virtualCallExactMethods.ValueOrDefault(mBasemost).EmptyIfNull().Any(x => { //return x.IsBaseOfOrEqual(typeReverseMapped) || typeReverseMapped.IsBaseOfOrEqual(x); return(x.IsBaseOfOrEqual(type) || type.IsBaseOfOrEqual(x)); }) where virtualRoots.Contains(mBasemost) select method; var requireMethodsArray = requireMethods.Distinct(TypeExtensions.MethodRefEqComparerInstance).ToArray(); foreach (var method in requireMethodsArray) { methodsSeen.Add(method, 1); // TODO: How to properly handle count? //todo.Enqueue(method); addTodo(method); } // Scan all interface calls and add any required methods var iFaceMethods = from type in typesSeen.Keys from iFace in interfaceCalls let iFaceType = iFace.Key let typeAndBases = type.EnumThisAllBaseTypes().ToArray() where typeAndBases.Any(x => x.DoesImplement(iFaceType)) let methods = typeAndBases.SelectMany(x => x.EnumResolvedMethods(iFace.Value)).ToArray() from method in methods//.Select(x => JsResolver.ResolveMethod(x)) where !methodsSeen.ContainsKey(method) let methodDef = method.Resolve() where methodDef != null // HACK? where !methodDef.IsStatic && methodDef.IsVirtual && !methodDef.IsAbstract from iFaceMethod in iFace.Value where method.IsImplementationOf(iFaceMethod) select method; var iFaceMethodsArray = iFaceMethods.Distinct(TypeExtensions.MethodRefEqComparerInstance).ToArray(); foreach (var method in iFaceMethodsArray) { methodsSeen.Add(method, 1); addTodo(method); //todo.Enqueue(method); } } } // Add type count to System.RuntimeType var runtimeTypeInc = typesSeen.Keys.FirstOrDefault(x => x.FullName == "System.RuntimeType"); if (runtimeTypeInc != null) { typesSeen[runtimeTypeInc] += 2; } var instanceFieldsByType = fieldAccesses .Where(x => !x.Key.Resolve().IsStatic) .ToLookup(x => x.Key.DeclaringType.FullResolve(x.Key), TypeExtensions.TypeRefEqComparerInstance); // Update all instance constructors to initialise instance fields, add final 'return' statement, // and update any early returns to return 'this' foreach (var ctx in instanceConstructors) { var fields = instanceFieldsByType[ctx.TRef].Select(x => x.Key); var initStmts = fields.Select(x => { var f = x.FullResolve(ctx.TRef, ctx.MRef); var assign = new StmtAssignment(ctx, new ExprFieldAccess(ctx, ctx.This, f), new ExprDefaultValue(ctx, f.FieldType)); return(assign); }).ToArray(); var returnStmt = new StmtReturn(ctx, ctx.This); var ast = methodAsts[ctx.MRef]; ast = new StmtBlock(ctx, initStmts.Concat((Stmt)ast).Concat(returnStmt)); ast = VisitorJsReturnThis.V(ast, ctx.This); methodAsts[ctx.MRef] = ast; } // Locally name all instance fields; base type names must not be re-used in derived types var instanceFieldsIndexed = new Dictionary <int, Tuple <IEnumerable <FieldReference>, int> >(); // <index, Tuple<all fields, total use count>> instanceFieldsByType.TypeTreeTraverse(x => x.Key, (fields, idx) => { var ordered = fields.OrderByDescending(x => x.Value).ToArray(); // Order by usage count, highest first foreach (var field in ordered) { var idxInfo = instanceFieldsIndexed.ValueOrDefault(idx, () => Tuple.Create(Enumerable.Empty <FieldReference>(), 0)); var newIdxInfo = Tuple.Create((IEnumerable <FieldReference>)idxInfo.Item1.Concat(field.Key).ToArray(), idxInfo.Item2 + field.Value); instanceFieldsIndexed[idx] = newIdxInfo; idx++; } return(idx); }, 0); var orderedInstanceFields = instanceFieldsIndexed.OrderByDescending(x => x.Value.Item2).ToArray(); var instanceFieldNameGen = new NameGenerator(); var instanceFieldNames = orderedInstanceFields .Select(x => new { name = instanceFieldNameGen.GetNewName(), fields = x.Value.Item1 }) .SelectMany(x => x.fields.Select(y => new { f = y, name = x.name })) .ToArray(); // Prepare list of static fields for global naming var staticFields = fieldAccesses.Where(x => x.Key.Resolve().IsStatic).ToArray(); // Prepare local variables for global naming. // All locals in all methods are sorted by usage count, then all methods usage counts are combined var clusters = methodAsts.Values.SelectMany(x => VisitorJsPhiClusters.V(x).Select(y => new ExprVarCluster(y))).ToArray(); var varToCluster = clusters.SelectMany(x => x.Vars.Select(y => new { cluster = x, var = y })).ToDictionary(x => x.var, x => x.cluster); var varsWithCount = methodAsts.Values.Select(x => { var methodVars = VisitorFindVars.V(x); // Parameters need one extra count, as they appear in the method declaration methodVars = methodVars.Concat(methodVars.Where(y => y.ExprType == Expr.NodeType.VarParameter).Distinct()); var ret = methodVars.Select(y => varToCluster.ValueOrDefault(y) ?? y) .GroupBy(y => y) .Select(y => new { var = y.Key, count = y.Count() }) .OrderByDescending(y => y.count) .ToArray(); return(ret); }).ToArray(); var localVarCounts = new Dictionary <int, int>(); foreach (var x in varsWithCount) { for (int i = 0; i < x.Length; i++) { localVarCounts[i] = localVarCounts.ValueOrDefault(i) + x[i].count; } } // Globally name all items that require names var needNaming = localVarCounts.Select(x => new { item = (object)x.Key, count = x.Value }) .Concat(methodsSeen.Select(x => new { item = (object)x.Key, count = x.Value })) .Concat(staticFields.Select(x => new { item = (object)x.Key, count = x.Value })) .Concat(typesSeen.Select(x => new { item = (object)x.Key, count = x.Value })) .Where(x => x.count > 0) .OrderByDescending(x => x.count) .ToArray(); var nameGen = new NameGenerator(); var globalNames = needNaming.ToDictionary(x => x.item, x => nameGen.GetNewName()); // Create map of all local variables to their names var localVarNames = varsWithCount.Select(x => x.Select((y, i) => new { y.var, name = globalNames[i] })) .SelectMany(x => x) .SelectMany(x => { var varCluster = x.var as ExprVarCluster; if (varCluster != null) { return(varCluster.Vars.Select(y => new { var = y, name = x.name })); } else { return(new[] { x }); } }) .ToDictionary(x => x.var, x => x.name); // Create map of all method names var methodNames = methodsSeen.Keys.ToDictionary(x => x, x => globalNames[x], TypeExtensions.MethodRefEqComparerInstance); // Create list of all static field names var staticFieldNames = staticFields.Select(x => new { f = x.Key, name = globalNames[x.Key] }); // Create map of all fields if (testing) { instanceFieldNames = instanceFieldNames.Select(x => { switch (x.f.FullName) { case "System.String System.Exception::_message": return(new { x.f, name = "$$_message" }); } return(x); }).ToArray(); } var fieldNames = instanceFieldNames.Concat(staticFieldNames).ToDictionary(x => x.f, x => x.name, TypeExtensions.FieldReqEqComparerInstance); // Create map of type names var typeNames = typesSeen .Where(x => x.Value > 0) .ToDictionary(x => x.Key, x => globalNames[x.Key], TypeExtensions.TypeRefEqComparerInstance); // Create virtual call tables var virtualCallIndices = new Dictionary <MethodReference, int>(TypeExtensions.MethodRefEqComparerInstance); var allVirtualMethods = new Dictionary <TypeReference, HashSet <MethodReference> >(TypeExtensions.TypeRefEqComparerInstance); typesSeen.Select(x => x.Key).TypeTreeTraverse(x => x, (type, vCalls) => { var mNewSlots = virtualCalls.ValueOrDefault(type).EmptyIfNull().ToArray(); int idx = vCalls.Length; foreach (var mNewSlot in mNewSlots) { virtualCallIndices[mNewSlot] = idx++; } var vCallsWithThisType = vCalls.Concat(mNewSlots).ToArray(); if (vCallsWithThisType.Length > 0) { var typesAndBases = type.EnumThisAllBaseTypes().ToArray(); var mVRoots = typesAndBases.SelectMany(x => virtualCalls.ValueOrDefault(x).EmptyIfNull()).ToArray(); var ms = type.EnumResolvedMethods(mVRoots).ToArray(); for (int i = 0; i < vCalls.Length; i++) { var mVCall = vCallsWithThisType[i]; foreach (var m in ms) { if (m.MatchMethodOnly(mVCall)) { vCallsWithThisType[i] = m; } } } var typeVMethods = new HashSet <MethodReference>(vCallsWithThisType, TypeExtensions.MethodRefEqComparerInstance); allVirtualMethods.Add(type, typeVMethods); } return(vCallsWithThisType); }, new MethodReference[0]); var typeData = Enum.GetValues(typeof(TypeData)).Cast <TypeData>().ToArray(); // Name all items that are within the type information var needTypeInformationNaming = interfaceCalls.Select(x => new { item = (object)x.Key, count = 1 }) .Concat(typeData.Select(x => new { item = (object)x, count = 1 })) .OrderByDescending(x => x.count) .ToArray(); var typeInformationNameGen = new NameGenerator(); var typeInformationNames = needTypeInformationNaming.ToDictionary(x => x.item, x => typeInformationNameGen.GetNewName()); if (testing) { typeInformationNames[TypeData.Name] = "$$TypeName"; typeInformationNames[TypeData.Namespace] = "$$TypeNamespace"; } // Create map of interfaces to their names var interfaceNames = interfaceCalls.Keys.ToDictionary(x => x, x => typeInformationNames[x], TypeExtensions.TypeRefEqComparerInstance); var interfaceCallIndices = interfaceCalls.SelectMany(x => x.Value.Select((m, i) => new { m, i })).ToDictionary(x => x.m, x => x.i, TypeExtensions.MethodRefEqComparerInstance); // Create map of type data constants var typeDataNames = typeData.ToDictionary(x => x, x => typeInformationNames[x]); var resolver = new JsMethod.Resolver { LocalVarNames = localVarNames, MethodNames = methodNames, FieldNames = fieldNames, TypeNames = typeNames, VirtualCallIndices = virtualCallIndices, InterfaceCallIndices = interfaceCallIndices, InterfaceNames = interfaceNames, TypeDataNames = typeDataNames, }; var js = new StringBuilder(); js.Append("(function(){"); int jsIndent = 1; Action jsNewLine = () => { js.AppendLine(); js.Append(' ', jsIndent * JsMethod.tabSize); }; jsNewLine(); js.Append("\"use strict\";"); jsNewLine(); // Construct methods foreach (var methodInfo in methodAsts) { var mRef = methodInfo.Key; var ast = methodInfo.Value; var mJs = JsMethod.Create(mRef, resolver, ast); var mJsLines = mJs.Split(new[] { Environment.NewLine }, StringSplitOptions.None); foreach (var line in mJsLines) { jsNewLine(); js.Append(line); } } // Construct static fields foreach (var field in staticFields.Select(x => x.Key)) { jsNewLine(); js.AppendFormat("// {0}", field.FullName); jsNewLine(); if (field.Name == "Empty" && field.DeclaringType.FullName == "System.String") { // Special case, as string does not have a static constructor to set String.Empty js.AppendFormat("var {0} = \"\";", fieldNames[field]); } else { js.AppendFormat("var {0} = {1};", fieldNames[field], DefaultValuer.Get(field.FieldType, fieldNames)); } } // Construct type data var typesSeenOrdered = typesSeen .Where(x => x.Value > 0) .Select(x => x.Key) .OrderByReferencedFirst(x => x) .ToArray(); var domTypes = new Dictionary <string, TypeReference>(); foreach (var type in typesSeenOrdered) { var unmappedType = type; var tDef = unmappedType.Resolve(); // Check for DOM types var jsClassAttr = tDef.GetCustomAttribute <JsClassAttribute>(); if (jsClassAttr != null) { if (jsClassAttr.ConstructorArguments.Count == 1) { // Non-abstract types only var tagOrConstructorName = (string)jsClassAttr.ConstructorArguments[0].Value; domTypes.Add(tagOrConstructorName, unmappedType); } } // Type JS jsNewLine(); js.AppendFormat("// {0}", unmappedType.FullName); jsNewLine(); js.AppendFormat("var {0}={{", typeNames[type]); // Type information js.AppendFormat("{0}:\"{1}\"", typeDataNames[TypeData.JsName], typeNames[type]); js.AppendFormat(", {0}:\"{1}\"", typeDataNames[TypeData.Name], unmappedType.Name()); js.AppendFormat(", {0}:\"{1}\"", typeDataNames[TypeData.Namespace], unmappedType.Namespace); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsValueType], unmappedType.IsValueType ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsPrimitive], unmappedType.IsPrimitive ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsArray], unmappedType.IsArray ? "true" : "false"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.ElementType], unmappedType.IsArray ? typeNames.ValueOrDefault(((ArrayType)unmappedType).ElementType, "null") : "null"); js.AppendFormat(", {0}:{1}", typeDataNames[TypeData.IsInterface], tDef.IsInterface ? "true" : "false"); var assignableTo = typesSeenOrdered.Where(x => unmappedType.IsAssignableTo(x)).Where(x => !x.IsSame(unmappedType)).ToArray(); js.AppendFormat(", {0}:[{1}]", typeDataNames[TypeData.AssignableTo], string.Join(", ", assignableTo.Select(x => typeNames[x]))); if (tDef.FullName == "System.Collections.Generic.Dictionary`2") { var typeGen = (GenericInstanceType)type; var dict = tDef.Module.Import(typeof(DotNetWebToolkit.Cil2Js.JsResolvers.Classes._Dictionary <,>)); var dictGen = dict.MakeGeneric(typeGen.GenericArguments[0], typeGen.GenericArguments[1]); var jsSlotsName = fieldNames[dictGen.EnumResolvedFields().First(x => x.Name == "slots")]; var slot = dictGen.Resolve().NestedTypes.First(x => x.Name == "Slot"); var slotGen = slot.MakeGeneric(typeGen.GenericArguments[0], typeGen.GenericArguments[1]); var jsHashCodeName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "hashCode")]; var jskeyName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "key")]; var jsValueName = fieldNames[slotGen.EnumResolvedFields().First(x => x.Name == "value")]; js.AppendFormat(", {0}:['{1}','{2}','{3}','{4}']", typeDataNames[TypeData.IsDictionary], jsSlotsName, jsHashCodeName, jskeyName, jsValueName); } if (!tDef.IsInterface) { if (!tDef.IsAbstract) { // Virtual method table, only needed on concrete types var typeAndBases = type.EnumThisAllBaseTypes().ToArray(); var methods = allVirtualMethods.ValueOrDefault(type); if (methods != null) { var idxs = methods .Select(x => { var xBasemost = x.GetBasemostMethod(x); return(new { m = x, idx = virtualCallIndices[xBasemost] }); }) .OrderBy(x => x.idx) .ToArray(); var s = string.Join(", ", idxs.Select(x => methodNames.ValueOrDefault(x.m, "null"))); js.AppendFormat(", {0}:[{1}]", typeDataNames[TypeData.VTable], s); } // Interface tables, only needed on concrete types var implementedIFaces = interfaceCalls.Where(x => typeAndBases.Any(y => y.DoesImplement(x.Key))).ToArray(); foreach (var iFace in implementedIFaces) { js.Append(", "); var iFaceName = interfaceNames[iFace.Key]; js.AppendFormat("{0}:[", iFaceName); var qInterfaceTableNames = from iMethod in iFace.Value let tMethod = typeAndBases.SelectMany(x => x.EnumResolvedMethods(iMethod)).First(x => x.IsImplementationOf(iMethod)) //let tM2 = JsResolver.ResolveMethod(tMethod) let idx = interfaceCallIndices[iMethod] orderby idx let methodName = methodNames[tMethod] select methodName; var interfaceTableNames = qInterfaceTableNames.ToArray(); js.Append(string.Join(", ", interfaceTableNames)); js.Append("]"); } } } if (tDef.IsEnum && tDef.GetCustomAttribute <JsStringEnumAttribute>() != null) { // JS string/enum map var values = tDef.Fields.Where(x => x.IsLiteral).Select(x => { return(string.Format("{0}:\"{1}\",\"{1}\":{0}", x.Constant, JsResolver.JsName(x))); }).ToArray(); js.AppendFormat(", {0}:{{{1}}}", typeDataNames[TypeData.EnumStringMap], string.Join(", ", values)); } // end js.Append("};"); } // Add type of each type, if System.RuntimeType has been seen var typeRuntimeType = typesSeen.Keys.FirstOrDefault(x => x.FullName == "System.RuntimeType"); if (typeRuntimeType != null) { jsNewLine(); foreach (var type in typesSeenOrdered) { js.Append(typeNames[type]); js.Append("._ = "); } js.Append(typeNames[typeRuntimeType]); js.Append(";"); } // Add comments descibing each interface jsNewLine(); js.Append("// Interface name map"); jsNewLine(); js.AppendFormat("// {0} = VTable", typeDataNames[TypeData.VTable]); foreach (var iFace in interfaceNames) { jsNewLine(); js.AppendFormat("// {0} = {1}", iFace.Value, iFace.Key.FullName); } // Add map of DOM types if (domTypes.Any()) { jsNewLine(); js.Append("// DOM type mapping"); jsNewLine(); // TODO: Auto-name this js.Append("var __ = {"); jsIndent++; foreach (var domType in domTypes) { jsNewLine(); js.AppendFormat("'{0}': {1},", domType.Key, typeNames[domType.Value]); } js.Length--; jsIndent--; jsNewLine(); js.Append("};"); } if (typesSeenOrdered.Any()) { jsNewLine(); js.Append("// json type mapping"); jsNewLine(); // TODO: Auto-name this js.Append("var $$ = {"); foreach (var type in typesSeenOrdered) { js.AppendFormat("'{0}':{0},", typeNames[type]); } js.Length--; js.Append("};"); var typesDicts = typesSeenOrdered .Where(x => x.IsGenericInstance && x.Resolve().FullName == "System.Collections.Generic.Dictionary`2") .ToArray(); if (typesDicts.Any()) { jsNewLine(); js.Append("// json dictionary info"); jsNewLine(); // TODO: Auto-name or get rid of this js.Append("var $d = {"); var any = false; foreach (var type in typesDicts) { var typeName = typeNames[type]; var ctor = type.EnumResolvedMethods().First(x => x.Name == ".ctor" && !x.HasParameters); var mAdd = type.EnumResolvedMethods().First(x => x.Name == "Add"); // If dict not involved in JSON, these methods may not be present if (methodNames.ContainsKey(ctor) && methodNames.ContainsKey(mAdd)) { var ctorName = methodNames[ctor]; var mAddName = methodNames[mAdd]; js.AppendFormat("'{0}':[{1},{2}],", typeName, ctorName, mAddName); any = true; } } if (any) { js.Length--; } js.Append("};"); } } jsNewLine(); jsNewLine(); js.Append("// Exports"); if (!testing) { var rootMethodsByType = rootMethods.ToLookup(x => x.DeclaringType, TypeExtensions.TypeRefEqComparerInstance); Action <NamespaceTree> treeToJs = null; treeToJs = tree => { js.Append("{"); jsIndent++; foreach (var subNs in tree.Namespaces) { jsNewLine(); js.AppendFormat("'{0}': ", subNs.NamespacePart); treeToJs(subNs); } if (tree.Types.Any()) { foreach (var type in tree.Types) { jsNewLine(); js.AppendFormat("'{0}': {{", type.Name); jsIndent++; foreach (var method in rootMethodsByType[type]) { jsNewLine(); js.AppendFormat("'{0}': {1},", method.Name, methodNames[method]); } js.Length--; jsIndent--; jsNewLine(); js.Append("},"); } js.Length--; } jsIndent--; jsNewLine(); js.Append("}"); }; var trees = NamespaceTree.Make(rootMethodsByType.Select(x => x.Key)); foreach (var tree in trees) { jsNewLine(); js.AppendFormat("window['{0}'] = ", tree.NamespacePart); treeToJs(tree); js.Append(";"); } } else { jsNewLine(); js.AppendFormat("window['main'] = {0};", methodNames[rootMethods.First()]); } jsIndent--; jsNewLine(); jsNewLine(); js.Append("})();"); var jsStr = js.ToString(); //Console.WriteLine(jsStr); var qFieldMap = from fieldName in fieldNames let declType = fieldName.Key.DeclaringType let declTypeMapped = JsResolver.TypeMapReverse(declType) ?? declType let declTypeName = declTypeMapped.AssemblyQualifiedName() where declType != null group fieldName by declTypeName; var fieldMap = qFieldMap.ToDictionary(x => x.Key, x => x.ToDictionary(y => y.Key.Name, y => y.Value)); var qTypeMap = from typeName in typeNames let type = typeName.Key.AssemblyQualifiedName() where type != null select new { type, typeName.Value }; var ttt = qTypeMap.ToArray(); var typeMap = ttt.ToDictionary(x => x.type, x => x.Value); var jsTypeMap = new JsonTypeMap(typeMap, fieldMap); return(new JsResult(jsStr, jsTypeMap)); }