//create the CorrelatedFeatures List. public void CreateCf(TimeSeries ts) { float biggestPearson; CorrelatedFeatures currentStruct = new CorrelatedFeatures(); int i; for (i = 0; i < ts.GetColumnSize(); i++) { currentStruct.Feature1 = ts.GetFeatures()[i]; currentStruct.Feature2 = ""; biggestPearson = Threshold; //minimum for correlation for (int j = 0; j < ts.GetColumnSize(); j++) { if (j == i) { continue; } float absPearson = AnomalyDetectionUtil.Pearson(ts.GetColumn(currentStruct.Feature1).ToArray(), ts.GetColumn(ts.GetFeatures()[j]).ToArray()); absPearson = absPearson > 0 ? absPearson : -absPearson; if (absPearson >= biggestPearson) { biggestPearson = absPearson; currentStruct.Feature2 = ts.GetFeatures()[j]; currentStruct.Correlation = biggestPearson; } } if (currentStruct.Feature2 != "") { currentStruct.AllPoints = new List <Point>(); Cf.Add(currentStruct); } } /* //for the last item * i = ts.GetColumnSize() - 1; * currentStruct.Feature1 = ts.GetFeatures()[i]; * currentStruct.Feature2 = ""; * biggestPearson = Threshold; //minimum for correlation * for (int j = 0; j < i; j++) * { * float absPearson = AnomalyDetectionUtil.Pearson(ts.GetColumn(currentStruct.Feature1).ToArray(), * ts.GetColumn(ts.GetFeatures()[j]).ToArray()); * absPearson = absPearson > 0 ? absPearson : -absPearson; * if (absPearson >= biggestPearson) * { * biggestPearson = absPearson; * currentStruct.Feature2 = ts.GetFeatures()[j]; * currentStruct.Correlation = biggestPearson; * } * } * * if (currentStruct.Feature2 != "") * { * currentStruct.AllPoints = new List<Point>(); * Cf.Add(currentStruct); * }*/ }
//return the _test TimeSeries column value at index. public float GetTestAt(string column, int index) { if (_test != null && _test.GetColumn(column) != null) { try { return(_test.GetColumn(column)[index]); } catch (Exception) { } } return(0); }
//calculating the Line for each element in the List. private void CreateForm(TimeSeries ts) { for (var i = 0; i < _cf.Count; i++) { var array = new Point[ts.GetRowSize()]; for (var j = 0; j < ts.GetRowSize(); j++) { array[j] = new Point(ts.GetColumn(_cf[i].Feature1)[j], ts.GetColumn(_cf[i].Feature2)[j]); _cf[i].AllPoints.Add(array[j]); } var line = CreateCorrelativeForm(array); _cf[i] = new CorrelatedFeatures(_cf[i].Feature1, _cf[i].Feature2, _cf[i].Correlation, line); //float th = FindThreshold(array, Cf[i]); //Cf[i] = new CorrelatedFeatures(Cf[i].Feature1, Cf[i].Feature2, Cf[i].Correlation, th, line); } }
//calculating the Line for each element in the List. public void CreateForm(TimeSeries ts) { for (var i = 0; i < Cf.Count; i++) { Point[] array = new Point[ts.GetRowSize()]; for (int j = 0; j < ts.GetRowSize(); j++) { array[j] = new Point(ts.GetColumn(Cf[i].Feature1)[j], ts.GetColumn(Cf[i].Feature2)[j]); Cf[i].AllPoints.Add(array[j]); } Line line = CreateCorrelativeForm(array); Cf[i] = new CorrelatedFeatures(Cf[i].Feature1, Cf[i].Feature2, Cf[i].Correlation, 0, line); //float th = FindThreshold(array, Cf[i]); //Cf[i] = new CorrelatedFeatures(Cf[i].Feature1, Cf[i].Feature2, Cf[i].Correlation, th, line); } }
//create the CorrelatedFeatures List. private void CreateCf(TimeSeries ts) { var currentStruct = new CorrelatedFeatures(); int i; for (i = 0; i < ts.GetColumnSize(); i++) { currentStruct.Feature1 = ts.GetFeatures()[i]; currentStruct.Feature2 = ""; var biggestPearson = _threshold; for (var j = 0; j < ts.GetColumnSize(); j++) { if (j == i) { continue; } var absPearson = AnomalyDetectionUtil.Pearson(ts.GetColumn(currentStruct.Feature1).ToArray(), ts.GetColumn(ts.GetFeatures()[j]).ToArray()); absPearson = absPearson > 0 ? absPearson : -absPearson; if (!(absPearson >= biggestPearson)) { continue; } biggestPearson = absPearson; currentStruct.Feature2 = ts.GetFeatures()[j]; currentStruct.Correlation = biggestPearson; } if (currentStruct.Feature2 == "") { continue; } currentStruct.AllPoints = new List <Point>(); _cf.Add(currentStruct); } }