示例#1
0
        public NeuralLinkData(NeuralLink neuralLink)
        {
            neuralLinkModel = neuralLink;

            if (neuralLinkModel.Nt == N_Type.Convolution_layer)
            {
                layerPoolingOutput = new CudaPieceFloat(PairInputStream.MAXSEGMENT_BATCH * neuralLinkModel.Neural_Out.Number, false, true);

                layerMaxPooling_Index = new CudaPieceInt(ParameterSetting.BATCH_SIZE * neuralLinkModel.Neural_Out.Number, false, true);
            }

            weightDeriv = new CudaPieceFloat(neuralLinkModel.Neural_In.Number * neuralLinkModel.Neural_Out.Number * neuralLinkModel.N_Winsize, false, true);
            biasDeriv   = new CudaPieceFloat(neuralLinkModel.Neural_Out.Number, false, true);

            weightUpdate = new CudaPieceFloat(neuralLinkModel.Neural_In.Number * neuralLinkModel.Neural_Out.Number * neuralLinkModel.N_Winsize, false, true);
            biasUpdate   = new CudaPieceFloat(neuralLinkModel.Neural_Out.Number, false, true);
        }
示例#2
0
        public DNN(int featureSize, int[] layerDim, int[] activation, float[] sigma, int[] arch, int[] wind, bool backupOnly)
        {
            NeuralLayer inputlayer = new NeuralLayer(featureSize);

            neurallayers.Add(inputlayer);
            for (int i = 0; i < layerDim.Length; i++)
            {
                NeuralLayer layer = new NeuralLayer(layerDim[i]);
                neurallayers.Add(layer);
            }

            for (int i = 0; i < layerDim.Length; i++)
            {
                NeuralLink link = new NeuralLink(neurallayers[i], neurallayers[i + 1], (A_Func)activation[i], 0, sigma[i],
                                                 (N_Type)arch[i], wind[i], backupOnly);
                neurallinks.Add(link);
            }
        }
示例#3
0
        /// <summary>
        /// given batch of input data. calculate the output.
        /// </summary>
        /// <param name="data"></param>
        //unsafe public void forward_activate( BatchSample_Input data, List<Amplib.AMPArrayInternal> layerOutputs)
        unsafe public void forward_activate(BatchSample_Input data)
        {
            int layerIndex = 0;

            foreach (NeuralLinkData neurallinkData in neurallinks)
            {
                NeuralLink neurallink = neurallinkData.NeuralLinkModel;
                ///first layer.
                if (layerIndex == 0)
                {
                    if (neurallink.Nt == N_Type.Fully_Connected)
                    {
                        MathOperatorManager.GlobalInstance.SEQ_Sparse_Matrix_Multiply_INTEX(data, neurallink.weight, neurallayers[layerIndex + 1].Output,
                                                                                            neurallink.Neural_In.Number, neurallink.Neural_Out.Number, neurallink.N_Winsize);
                    }
                    else if (neurallink.Nt == N_Type.Convolution_layer)
                    {
                        MathOperatorManager.GlobalInstance.Convolution_Sparse_Matrix_Multiply_INTEX(data, neurallink.weight, neurallinkData.LayerPoolingOutput, neurallink.Neural_In.Number, neurallink.Neural_Out.Number, neurallink.N_Winsize);

                        MathOperatorManager.GlobalInstance.Max_Pooling(neurallinkData.LayerPoolingOutput, data, neurallayers[layerIndex + 1].Output, neurallinkData.LayerMaxPooling_Index, neurallink.Neural_Out.Number);
                    }
                }
                else
                {
                    MathOperatorManager.GlobalInstance.Matrix_Multipy(neurallayers[layerIndex].Output, neurallink.weight, neurallayers[layerIndex + 1].Output, data.batchsize, neurallink.Neural_In.Number, neurallink.Neural_Out.Number, 0);
                }
                if (neurallink.Af == A_Func.Tanh)
                {
                    MathOperatorManager.GlobalInstance.Matrix_Add_Tanh(neurallayers[layerIndex + 1].Output, neurallink.bias, data.batchsize, neurallink.Neural_Out.Number);
                }
                else if (neurallink.Af == A_Func.Linear)
                {
                    MathOperatorManager.GlobalInstance.Matrix_Add_Vector(neurallayers[layerIndex + 1].Output, neurallink.bias, data.batchsize, neurallink.Neural_Out.Number);
                }
                layerIndex += 1;
            }
        }
示例#4
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="fileName"></param>
        /// <param name="allocateStructureFromEmpty">True will init DNN structure and allocate new space; False will only load data from file</param>
        public void Model_Load(string fileName, bool allocateStructureFromEmpty)
        {
            FileStream   mstream = new FileStream(fileName, FileMode.Open, FileAccess.Read);
            BinaryReader mreader = new BinaryReader(mstream);

            List <int> layer_info = new List <int>();
            int        mlayer_num = mreader.ReadInt32();

            for (int i = 0; i < mlayer_num; i++)
            {
                layer_info.Add(mreader.ReadInt32());
            }
            for (int i = 0; i < layer_info.Count; i++)
            {
                if (allocateStructureFromEmpty)
                {
                    NeuralLayer layer = new NeuralLayer(layer_info[i]);
                    neurallayers.Add(layer);
                }
            }

            int mlink_num = mreader.ReadInt32();

            for (int i = 0; i < mlink_num; i++)
            {
                int   in_num          = mreader.ReadInt32();
                int   out_num         = mreader.ReadInt32();
                float inithidbias     = mreader.ReadSingle();
                float initweightsigma = mreader.ReadSingle();

                NeuralLink link = null;
                if (ParameterSetting.LoadModelOldFormat)
                {
                    if (allocateStructureFromEmpty)
                    {
                        // for back-compatibility only. The old model format donot have those three fields
                        link = new NeuralLink(neurallayers[i], neurallayers[i + 1], A_Func.Tanh, 0, initweightsigma, N_Type.Fully_Connected, 1, false);
                    }
                }
                else
                {
                    // this is the eventually favorable loading format
                    int mws = mreader.ReadInt32();
                    //// decompose a Int32 integer, whose higher 16 bits store activiation function and lower 16 bits store network type
                    //// In addition, for backward-compatible, neurallinks[i].Af = tanh is stored as 0, neurallinks[i].Af = linear is stored as 1, neurallinks[i].Af = rectified is stored as 2
                    //// Refer to the Int2A_FuncMapping
                    int       afAndNt = mreader.ReadInt32();
                    A_Func    aF      = Int2A_Func(afAndNt >> 16);
                    N_Type    mnt     = (N_Type)(afAndNt & ((1 << 16) - 1));
                    P_Pooling mp      = (P_Pooling)mreader.ReadInt32();
                    if (allocateStructureFromEmpty)
                    {
                        link = new NeuralLink(neurallayers[i], neurallayers[i + 1], aF, 0, initweightsigma, mnt, mws, false);
                    }
                }
                if (allocateStructureFromEmpty)
                {
                    neurallinks.Add(link);
                }
            }

            for (int i = 0; i < mlink_num; i++)
            {
                int weight_len = mreader.ReadInt32(); // Write(neurallinks[i].Back_Weight.Length);
                if (weight_len != neurallinks[i].Back_Weight.Length)
                {
                    Console.WriteLine("Loading Model Weight Error!  " + weight_len.ToString() + " " + neurallinks[i].Back_Weight.Length.ToString());
                    Console.ReadLine();
                }
                for (int m = 0; m < weight_len; m++)
                {
                    neurallinks[i].Back_Weight[m] = mreader.ReadSingle();
                }
                int bias_len = mreader.ReadInt32();
                if (bias_len != neurallinks[i].Back_Bias.Length)
                {
                    Console.WriteLine("Loading Model Bias Error!  " + bias_len.ToString() + " " + neurallinks[i].Back_Bias.Length.ToString());
                    Console.ReadLine();
                }
                for (int m = 0; m < bias_len; m++)
                {
                    neurallinks[i].Back_Bias[m] = mreader.ReadSingle();
                }
            }
            mreader.Close();
            mstream.Close();
            CopyIntoCuda();
        }
示例#5
0
 public void Init(NeuralLink refLink)
 {
     weight.Init(refLink.Back_Weight);
     bias.Init(refLink.Back_Bias);
 }