示例#1
0
        /// <summary>
        /// Randomly generates a firm object (production technology and output market parameters).
        /// </summary>
        /// <param name="ip">A pointer to the collection of input parameters.</param>
        /// <param name="FirmID">Unique identifier for this firm (run number)</param>
        public Firm(InputParameters ip, int FirmID)
        {
            // Choose random values for DISP2 (the top DISP1 resources
            // account for DISP2 percent of total resource costs), and
            // density (sparsity) of resource consumption pattern matrix
            this.g = GenRandNumbers.GenUniformDbl(ip.DISP2_MIN, ip.DISP2_MAX);
            this.d = GenRandNumbers.GenUniformDbl(ip.DNS_MIN, ip.DNS_MAX);

            // Generate the true product margins and the true, optimal
            // decision vector. Keep generating new margins until there
            // is at least one product in the optimal mix.
            RowVector MAR, DECT0;

            do
            {
                MAR   = this.GenMargins(ip);
                DECT0 = MAR.Map(x => (x < 1.0) ? 0.0 : 1.0);
            } while (DECT0.TrueForAll(x => x == 0.0));

            // Generate vector of maximum production quantities
            this.mxq = this.GenMXQ(ip);
            // And associated vector of optimal production quantities
            ColumnVector QT = mxq.ewMultiply(DECT0);

            // Flowchart 5.1 - Create resource consumption pattern matrix
            this.res_cons_pat = GenResConsPat(ip);

            // Flowchart 5.2 - Compute TRU
            // Calculate vector of total units of resource
            // consumption, by product
            ColumnVector TRU = this.CalcResConsumption(QT);

            // Flowchart 5.3 - Compute MAXRU
            // Calculate resource consumption under the assumption
            // that all products are produced at maximum quantity
            ColumnVector MAXRU = this.CalcResConsumption(mxq);

            RowVector RCC, PC_B, RCCN;
            double    TCT0;

            #region Flowchart 5.4 - Generate RCC, RCU, and RCCN

            /* -------------------------------- */
            // Flowchart 5.4(a)-(g)

            // Generate vector of total resource costs (RCC)
            RCC = GenRCC(ip);

            /* -------------------------------- */
            // Flowchart 5.4(h)

            // Now generate unit resource costs (RCU) by doing element-wise
            // division of RCC by MAXRU
            this.rcu = RCC.Map((x, i) => x / MAXRU[i]);

            /* -------------------------------- */
            // Flowchart 5.4(i)

            // Compute new RCC vector (RCCN) based on unit resource
            // costs (RCU) and true unit resource consumption (TRU)
            RCCN = this.rcu.ewMultiply(TRU);
            // Check to see if the first resource (RCCN[0]) is the largest.
            // If not, increase RCU[0] by just enough to make it so.
            if (RCCN[0] < RCCN.Skip(1).Max() + 1)
            {
                RCCN[0]     = Math.Ceiling(RCCN.Max()) + 1.0;
                this.rcu[0] = RCCN[0] / TRU[0];
            }

            #endregion

            // Flowchart 5.5 - Calculate PC_B
            // Calculate true unit product costs
            PC_B = this.CalcTrueProductCosts();

            // Flowchart 5.6 - Compute total costs TCT0
            // Compute total costs
            TCT0 = this.CalcTotCosts(QT);

            // Flowchart 5.7 - Rename RCCN to RCC
            RCC         = RCCN;
            initial_rcc = RCC;

            #region Flowchart 5.8 - Calculate SP, TRV0, PROFITT0

            // Calculate product selling prices, total revenue, and profit
            this.sp = PC_B.ewMultiply(MAR);
            double TRV0 = this.sp * QT;
            this.profitt0 = TRV0 - TCT0;

            #endregion

            // 5.9(a) Create RANK vector
            // Note: this method provides a stable sort. It's important to use a stable sort.
            // LOOKUP IN VERSION.TXT WHY IT'S IMPORTANT TO USE A STABLE SORT HERE.
            initial_rank = Enumerable.Range(0, RCC.Dimension).OrderByDescending(i => RCC[i]).ToArray();

            #region Flowchart 5.9(b) - Create RES_CONS_PAT_PRCT

            this.res_cons_pat_prct = new RectangularMatrix(ip.RCP, ip.CO);

            for (int r = 0; r < this.res_cons_pat.RowCount; ++r)
            {
                RowVector rv = this.res_cons_pat.Row(r);
                if (TRU[r] != 0.0)
                {
                    rv = rv.Map((alt_ij, col) => alt_ij * QT[col] / TRU[r]);
                    if (Math.Abs(rv.Sum() - 1.0) > 0.01)
                    {
                        throw new ApplicationException("Sum of row of RES_CONS_PAT_PRCT not equal to 1.");
                    }
                }
                else
                {
                    rv = rv.Map(alt_ij => 0.0);
                }

                this.res_cons_pat_prct.CopyRowInto(rv, r);
            }

            #endregion

            #region Flowchart 5.9(c) - Create correlation matrix
            // Create correlation matrix for rows of RES_CONS_PAT_PRCT
            MultivariateSample mvs = new MultivariateSample(ip.RCP);
            for (int c = 0; c < this.res_cons_pat_prct.ColumnCount; ++c)
            {
                mvs.Add(this.res_cons_pat_prct.Column(c));
            }

            this.pearsoncorr = new SymmetricMatrix(ip.RCP);

            for (int i = 0; i < mvs.Dimension; ++i)
            {
                for (int j = i; j < mvs.Dimension; ++j)
                {
                    //PearsonCorr[i, j] = mvs.PearsonRTest( i, j ).Statistic;
                    this.pearsoncorr[i, j] = mvs.TwoColumns(i, j).PearsonRTest().Statistic;
                }
            }

            #endregion

            // Flowchart 5.10 - Logging true system
            // Note: I'm deliberately passing copies of the fields MXQ, SP, etc.
            Output.LogFirm(
                ip, this, FirmID,
                MAR, DECT0,
                TRV0, TCT0, profitt0,
                RCC);
        }
示例#2
0
        /// <summary>
        /// Implements step 5.3 of the flowchart: Generates a [1 x RCP] vector of
        /// total resource costs by resource.
        /// </summary>
        /// <param name="ip">An input parameters object.</param>
        private RowVector GenRCC(InputParameters ip)
        {
            bool          throwAway;
            int           numThrows = 0;
            List <double> rcc;

            // repeat the following loop until a suitable vector
            // RCC is generated.
            do
            {
                /* -------------------------------- */
                // Flowchart 5.4(b)

                // Calculate total resource cost of first DISP1 resources
                double topTR = G * ip.TR;
                // Calculate minimum allowable resource cost in first
                // DISP1 resources
                double rmin = (1.0 - G) * ip.TR / (ip.RCP - ip.DISP1);
                // The following is an upward adjustment of rmin.
                // Without this, the values of the resources in the
                // remaining resources have too little variance.
                // It checks how much room there is to adjust rmin,
                // and takes 2.5% of that room. The 2.5% was determined
                // through trial and error.
                double maxValOfLargestElem = topTR - ((ip.DISP1 - 1.0) * rmin);
                rmin += (maxValOfLargestElem - rmin) * 0.025;

                /* -------------------------------- */
                // Flowchart 5.4(c)

                // Generate the first DISP1 random numbers
                List <double> temp1 = new List <double>();
                for (int i = 1; i <= ip.DISP1 - 1; ++i)
                {
                    double rmax = (topTR - temp1.Sum()) - ((ip.DISP1 - i) * rmin);
                    if (rmax < rmin)
                    {
                        throw new ApplicationException("rmax less than rmin");
                    }
                    double ri = GenRandNumbers.GenUniformDbl(rmin, rmax);
                    temp1.Add(ri);
                }
                // The final element is computed to ensure that the total
                // in temp1 is topTR
                temp1.Add(topTR - temp1.Sum());
                // Move the biggest resource to the front
                double temp1Max = temp1.Max();
                if (!temp1.Remove(temp1Max))
                {
                    throw new ApplicationException("Could not remove largest element.");
                }
                temp1.Insert(0, temp1Max);

                // SOME CHECKS ON THE NUMBERS
                if (Math.Abs(temp1.Sum() - ip.TR * G) > 1.0)
                {
                    throw new ApplicationException("Sum of first DISP1 resources not correct.");
                }
                if (temp1.Min() < (1 - G) * ip.TR / (ip.RCP - ip.DISP1))
                {
                    throw new ApplicationException("Min element too small.");
                }

                /* -------------------------------- */
                // Flowchart 5.4(d)

                List <double> temp2 = new List <double>();
                for (int i = 0; i < ip.RCP - ip.DISP1; ++i)
                {
                    temp2.Add(GenRandNumbers.GenUniformDbl(0.05, 0.95));
                }
                temp2.Normalize();
                temp2.MultiplyBy((1.0 - G) * ip.TR);

                double temp1Min = temp1.Min();
                while (temp2.Max() - temp1.Min() > 1.0)
                {
                    // Sort the list in descending order
                    temp2.Sort();
                    temp2.Reverse();

                    for (int i = 0; i < temp2.Count / 2; ++i)
                    {
                        double overage = Math.Max(temp2[i] - temp1Min, 0.0);
                        temp2[i] -= overage;
                        temp2[temp2.Count - 1 - i] += overage;
                    }
                }
                temp2.Shuffle();

                // SOME CHECKS
                if (Math.Abs(temp2.Sum() - ip.TR * (1.0 - G)) > 1.0)
                {
                    throw new ApplicationException("Sum of small resources not correct.");
                }

                /* -------------------------------- */
                // Flowchart 5.4(e)
                rcc = new List <double>(ip.RCP);
                rcc.AddRange(temp1);
                rcc.AddRange(temp2);

                /* -------------------------------- */
                // Flowchart 5.4(f)
                throwAway = rcc.Exists(x => x < 1.0);

                // SOME CHECKS
                if (rcc.Min() < 0.0)
                {
                    throw new ApplicationException("Negative element in RCC.");
                }

                if (throwAway)
                {
                    ++numThrows;
                }
            } while (throwAway);

            return(new RowVector(rcc));
        }
示例#3
0
        /// <summary>
        /// Generates a resource consumption pattern matrix
        /// </summary>
        /// <param name="ip">The current InputParameters object</param>
        private RectangularMatrix GenResConsPat(InputParameters ip)
        {
            bool throwAway;
            int  numThrows = 0;

            RectangularMatrix outputMatrix;

            do
            {
                throwAway    = false;
                outputMatrix = new RectangularMatrix(ip.RCP, ip.CO);

                // Flowchart 5.1(a): Generate vector X
                RowVector X = GenRandNumbers.GenStdNormalVec(ip.CO);

                // The following code is used in both 5.1(b) and 5.1(c):
                RowVector[] Y = new RowVector[ip.RCP - 1];
                RowVector[] Z = new RowVector[Y.Length];

                for (int i = 0; i < Y.Length; ++i)
                {
                    Y[i] = GenRandNumbers.GenStdNormalVec(ip.CO);
                }

                // Flowchart 5.1(b): Generate (DISP1 - 1) vectors Y
                // Then create Z vectors based on X and Y
                double COR1 =
                    GenRandNumbers.GenUniformDbl(ip.COR1LB, ip.COR1UB);
                double sqrtConstant1 = Math.Sqrt(1 - COR1 * COR1);
                for (int i = 0; i < ip.DISP1 - 1; ++i)
                {
                    Z[i] = (COR1 * X) + (sqrtConstant1 * Y[i]);
                }

                // Flowchart 5.1(c): Generate (RCP - DISP1) vectors Y
                // Then create the remaining Z vectors based on X and Y
                double COR2 =
                    GenRandNumbers.GenUniformDbl(ip.COR2LB, ip.COR2UB);
                double sqrtConstant2 = Math.Sqrt(1 - COR2 * COR2);
                for (int i = ip.DISP1 - 1; i < Z.Length; ++i)
                {
                    Z[i] = (COR2 * X) + (sqrtConstant2 * Y[i]);
                }

                // Flowchart 5.1(d):
                // Take the absolute values of X and the Z's and
                // scale both by 10.0.
                X = X.Map(x => 10.0 * Math.Abs(x));
                for (int i = 0; i < Z.Length; ++i)
                {
                    Z[i] = Z[i].Map(z => 10.0 * Math.Abs(z));
                }

                // Round X and the Z's to integers
                X = X.Map(x => Math.Ceiling(x));
                for (int i = 0; i < Z.Length; ++i)
                {
                    Z[i] = Z[i].Map(z => Math.Ceiling(z));
                }

                // Flowchart 5.1(e):
                // Now punch out values in the Z's at random to make
                // the matrix sparse
                for (int i = 0; i < Z.Length; ++i)
                {
                    Z[i] = Z[i].Map(x => ((GenRandNumbers.GenUniformDbl() < D) ? x : 0.0));
                }

                // Flowchart 5.1(f):
                // Copy X into first row of outputMatrix.
                outputMatrix.CopyRowInto(X, 0);
                // Copy the Z's into the remaining rows of outputMatrix.
                for (int i = 0; i < Z.Length; ++i)
                {
                    outputMatrix.CopyRowInto(Z[i], i + 1);
                }

                // Ensure that the first row has no zeros
                // There is a very small probability of getting a zero with
                // the Ceiling function, but given that there are a finite
                // number of double-precision floating point numbers, it
                // is not impossible to get a 0.0.
                double[] firstRow = outputMatrix.Row(0).ToArray();

                if (Array.Exists(firstRow, x => x == 0.0))
                {
                    throwAway = true;
                    break;
                }

                // Ensure that each *row* has at least one non-zero entry
                for (int i = 0; i < outputMatrix.RowCount; ++i)
                {
                    double[] nextRow = outputMatrix.Row(i).ToArray();

                    if (Array.TrueForAll(nextRow, x => x == 0.0))
                    {
                        throwAway = true;
                        break;
                    }
                }

                // Ensure that each *column* has at least one non-zero entry
                // Technically, this check is redundant, as the first row, X,
                // is not supposed to have any zero entries. But just to be
                // on the safe side...
                for (int j = 0; j < outputMatrix.ColumnCount; ++j)
                {
                    double[] nextCol = outputMatrix.Column(j).ToArray();

                    if (Array.TrueForAll(nextCol, x => x == 0.0))
                    {
                        string s = "There is a column with all zeros. " +
                                   "That should not happen since the first row is " +
                                   "supposed to have no zeros.";
                        throw new ApplicationException(s);
                    }
                }

                if (throwAway)
                {
                    ++numThrows;
                }
            } while (throwAway);

            Console.WriteLine("RES_CONS_PAT: {0} Throw aways\n", numThrows);

            return(outputMatrix);
        }
示例#4
0
 /// <summary>
 /// Generates a vector of product margins. Each element is
 /// U[ip.MARLB, ip.MARUB]. Values less than (greater) than one indicate
 /// products that generate losses (profits).
 /// </summary>
 /// <param name="ip">The current InputParameters object</param>
 /// <returns>A [1 x CO] vector, each element drawn from
 /// the distribution U[ip.MARLB, ip.MARUB].</returns>
 private RowVector GenMargins(InputParameters ip)
 {
     return(new RowVector(ip.CO)
            .Map(x => GenRandNumbers.GenUniformDbl(ip.MARLB, ip.MARUB)));
 }
示例#5
0
        static void Main(string[] args)
        {
            #region Console header

            DrawASCIIart();

            #endregion

            #region Read input file and create InputParameters object

            FileInfo inputFile = new FileInfo(Environment.CurrentDirectory + @"\input.txt");

            if (!inputFile.Exists)
            {
                Console.WriteLine("Could not find input file: \n{0}", inputFile.FullName);
                Console.WriteLine("Aborting. Press ENTER to end the program.");
                Console.ReadLine();
                return;
            }

            InputParameters ip = new InputParameters(inputFile);

            #endregion

            #region Make a copy of the input file

            // We found it helpful to make a copy of the input file every time we ran the
            // simulation. We stamp the copy's filename with the date and time so that
            // we know which results files correspond to which input file.
            DateTime dt = DateTime.Now;
            string   inputFileCopyName =
                String.Format(
                    "input {0:D2}-{1:D2}-{2:D4} {3:D2}h {4:D2}m {5:D2}s, seed {6:G}.txt",
                    dt.Month,
                    dt.Day,
                    dt.Year,
                    dt.Hour,
                    dt.Minute,
                    dt.Second,
                    GenRandNumbers.GetSeed()
                    );
            FileInfo inputFileCopy = new FileInfo(Environment.CurrentDirectory + @"\" + inputFileCopyName);
            inputFile.CopyTo(inputFileCopy.FullName, true);
            File.SetCreationTime(inputFileCopy.FullName, dt);
            File.SetLastWriteTime(inputFileCopy.FullName, dt);

            #endregion

            #region Create output files

            Output.CreateOutputFiles(ip);

            #endregion

            #region Generate Sample of Firms and their Cost Systems

            Firm[] sampleFirms = new Firm[ip.NUM_FIRMS];

            for (int firmID = 1; firmID <= ip.NUM_FIRMS; ++firmID)
            {
                Console.WriteLine(
                    "Starting firm {0:D3} of {1}",
                    firmID + 1, sampleFirms.Length
                    );

                Firm f = new Firm(ip, firmID);
                sampleFirms[firmID - 1] = f;

                for (int a_indx = 0; a_indx < ip.ACP.Count; ++a_indx)
                {
                    int a = ip.ACP[a_indx];

                    for (int p_indx = 0; p_indx < ip.PACP.Count; ++p_indx)
                    {
                        int p = ip.PACP[p_indx];

                        for (int r_indx = 0; r_indx < ip.PDR.Count; ++r_indx)
                        {
                            int r = ip.PDR[r_indx];

                            // Create a cost system
                            CostSys costsys = new CostSys(ip, f, a, p, r);
                            f.costSystems.Add(costsys);
                            int costSysID = f.costSystems.Count;
                            Output.LogCostSys(costsys, firmID, costSysID);

                            // Generate a starting decision for the cost system.
                            RowVector startingDecision;
                            if (ip.STARTMIX == 0)
                            {
                                startingDecision = f.CalcOptimalDecision();
                            }
                            else
                            {
                                var ones = Enumerable.Repeat(1.0, ip.CO).ToList();
                                startingDecision = new RowVector(ones);
                                for (int i = 0; i < startingDecision.Dimension; ++i)
                                {
                                    if (GenRandNumbers.GenUniformDbl() < ip.EXCLUDE)
                                    {
                                        startingDecision[i] = 0.0;
                                    }
                                }
                            }

                            /* Examine error in cost from implementing this decision.
                             * Assume the firm implements the decision startingDecision. Upon
                             * doing so, it will observe total resource consumption. It will then
                             * allocate resources to cost pools, as per the B parameter of the cost
                             * system, choose drivers as per the D parameter of the cost system,
                             * and then allocate resources to cost objects and compute reported costs.
                             * The reported costs are returned as PC_R. The difference
                             * between these and the true benchmark costs (PC_B) is used to compute
                             * the mean percent error in costs.
                             */
                            RowVector PC_R = costsys.CalcReportedCosts(ip, startingDecision);
                            RowVector PC_B = f.CalcTrueProductCosts();
                            double    MPE  = PC_B.Zip(PC_R, (pc_b, pc_r) => Math.Abs(pc_b - pc_r) / pc_b).Sum() / PC_B.Dimension;
                            Output.LogCostSysError(costsys, firmID, costSysID, startingDecision, PC_B, PC_R, MPE);

                            /* Assume the firm implements the decision startingDecision. Upon
                             * doing so, it will observe total resource consumption. It will then
                             * allocate resources to cost pools, as per the B parameter of the cost
                             * system, choose drivers as per the D parameter of the cost system,
                             * and then allocate resources to cost objects and compute reported costs.
                             * The reported costs are returned as PC_R. Upon observing the
                             * reported costs, the firm may wish to update its original decision. When
                             * it implements the updated decision, costs will change again. The outcome
                             * of this process will either be an equilibrium decision (fixed point), or
                             * a cycle of decisions.
                             */
                            (CostSystemOutcomes stopCode, RowVector endingDecision) = costsys.EquilibriumCheck(ip, startingDecision);
                            Output.LogCostSysLoop(costsys, firmID, costSysID, startingDecision, endingDecision, stopCode);
                        }
                    }
                }
            }

            #endregion

            Console.WriteLine("Writing output files...");
            Output.WriteOutput();
            Console.WriteLine("Done!");
        }