示例#1
0
        public static void DebugdWStack()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits");
            var    flags        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length);
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            for (int i = 1; i < 8; i++)
            {
                var uvw0          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits");
                var flags0        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length);
                var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm);
                uvw          = FitsIO.Stitch(uvw, uvw0);
                flags        = FitsIO.Stitch(flags, flags0);
                visibilities = FitsIO.Stitch(visibilities, visibilities0);
            }

            var maxW = 0.0;

            for (int i = 0; i < uvw.GetLength(0); i++)
            {
                for (int j = 0; j < uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, frequencies[frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < flags.GetLength(0); i++)
            {
                for (int j = 0; j < flags.GetLength(1); j++)
                {
                    for (int k = 0; k < flags.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var    visibilitiesCount = visCount2;
            int    gridSize          = 4096;
            int    subgridsize       = 16;
            int    kernelSize        = 8;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.6 / 3600.0 * PI / 180.0;
            int    wLayerCount       = 32;
            double wStep             = maxW / (wLayerCount);
            var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            var    c2       = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0);
            var    metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfVis = new Complex[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];

            for (int i = 0; i < visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < visibilities.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            var psfGrid = IDG.GridW(c, metadata, psfVis, uvw, frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            FitsIO.Write(psf, "psfWStack.fits");

            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.4f * fastCD.MaxLipschitz;
            var alpha          = 0.1f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            for (int cycle = 0; cycle < 8; cycle++)
            {
                var dirtyGrid = IDG.GridW(c, metadata, residualVis, uvw, frequencies);
                var dirty     = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirty);

                FitsIO.Write(dirty, "dirty_" + cycle + ".fits");
                bMapCalculator.ConvolveInPlace(dirty);
                FitsIO.Write(dirty, "bMap_" + cycle + ".fits");
                var result = fastCD.Deconvolve(xImage, dirty, lambda, alpha, 10000, 1e-4f);

                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");

                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis  = IDG.DeGridW(c, metadata, xGrid, uvw, frequencies);
                var modelGrid = IDG.GridW(c, metadata, modelVis, uvw, frequencies);
                var model     = FFT.WStackIFFTFloat(modelGrid, c.VisibilitiesCount);
                FFT.Shift(model);
                FitsIO.Write(model, "model_" + cycle + ".fits");
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
            }
        }
示例#2
0
        public static void DebugILGPU()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.Backward(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            var psfCutDouble = CutImg(psf);
            var psfCut       = ToFloatImage(psfCutDouble);

            FitsIO.Write(psfCut, "psfCut.fits");


            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var imageSection   = new Rectangle(0, 128, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);

            fastCD.ResetLipschitzMap(ToFloatImage(psf));
            var gpuCD  = new GPUSerialCD(totalSize, psfCut, 100);
            var lambda = 0.5f * fastCD.MaxLipschitz;
            var alpha  = 0.8f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                bMapCalculator.ConvolveInPlace(dirtyImage);
                FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);
                var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);

                if (result.Converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");
                FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();

                var hello = FFT.Forward(xImage, 1.0);
                hello = Common.Fourier2D.Multiply(hello, psfGrid);
                var hImg = FFT.Backward(hello, (double)(128 * 128));
                //FFT.Shift(hImg);
                FitsIO.Write(hImg, "modelDirty_FFT.fits");

                var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies);
                FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits");
            }
        }