示例#1
0
        private void trainHumansToolStripMenuItem_Click_1(object sender, EventArgs e)
        {
            //XML file
            humanList   = new List <Human>();
            humanList   = AuxiliaryFunctions.Deserialize <List <Human> >("Database.xml");
            trainArray  = new double[humanList.Count][];
            outputArray = new double[humanList.Count];
            fileCount   = humanList.Count;
            InitializeProgressBar();
            for (int i = 0; i < humanList.Count; i++)
            {
                trainArray[i]  = AuxiliaryFunctions.ByteArrayToDouble(humanList[i].HOG);
                outputArray[i] = humanList[i].IsHuman;
                index++;

                if (index % (fileCount / 100) == 0)
                {
                    progressValue++;
                    label1.Text = (progressValue + " %").ToString();
                    pb.Value    = progressValue <= 100 ? progressValue : 100;
                    Thread.Sleep(10);
                }
            }
            //trainArray = humanList.Select(x => AuxiliaryFunctions.ByteArrayToDouble(x.HOG)).ToArray();
            //outputArray = humanList.Select(x => (double)x.IsHuman).ToArray();

            var teacher = new SequentialMinimalOptimization <Gaussian>()
            {
                UseComplexityHeuristic = true,
                UseKernelEstimation    = true
            };
            SupportVectorMachine <Gaussian> svm = teacher.Learn(trainArray, outputArray);

            resultLine = svm.Weights;
            AuxiliaryFunctions.WriteWeight(resultLine, "weight.txt");
            AuxiliaryFunctions.MakeSerialization(svm, "SVM_G.xml");
        }
示例#2
0
        static void Main(string[] args)
        {
            //Music directory
            string directory = @"T:\Documents\music-classifier\clips_45seconds";

            //Expected energy output
            //Input file is comma separated in the following format:
            //  song1,expectedEnergy,expectedPositivity
            //  song2,expectedEnergy,expectedPositivity
            //
            //song1 is expected to be the filename of the song, and the file is expected to be in the same directory as the csv
            //so if song1 is "hello.mp3", a hello.mp3 file should be in the directory that the csv is located
            List <Song> expectedOutputs = new List <Song>();

            string[] energyLines = System.IO.File.ReadAllLines(@"T:\Documents\music-classifier\clips_45seconds\expected_energy_positivity_random.csv");
            foreach (string line in energyLines)
            {
                string[] parts              = line.Split(',');
                string   songPath           = Path.Combine(directory, parts[0]);
                double   expectedEnergy     = double.Parse(parts[1]);
                double   expectedPositivity = double.Parse(parts[2]);

                Classifier.Song song = new Classifier.Song();
                song.positivity = expectedPositivity;
                song.energy     = expectedEnergy;
                song.title      = songPath;
                expectedOutputs.Add(song);
            }

            //Train
            Classifier.SupportVectorMachine classifier = new Classifier.SupportVectorMachine();
            classifier.Train(expectedOutputs);

            //Save classifier
            classifier.SaveModels(Path.Combine(ExecutableInformation.getTmpPath(), "positivity.svm"), Path.Combine(ExecutableInformation.getTmpPath(), "energy.svm"));
        }
示例#3
0
        static void Main(string[] args)
        {
            //Create and load classifier
            Classifier.SupportVectorMachine svm = new Classifier.SupportVectorMachine();
            svm.LoadModels(Path.Combine(@"T:\Documents\music-classifier\EmotionalGUI\resources\models", "positivity_gaussian.svm"),
                           Path.Combine(@"T:\Documents\music-classifier\EmotionalGUI\resources\models", "energy_gaussian.svm"));

            string directory = @"T:\Documents\music-classifier\clips_45seconds";

            List <Classifier.Song> expectedOutputs = new List <Classifier.Song>();

            string[] songLines = System.IO.File.ReadAllLines(@"T:\Documents\music-classifier\clips_45seconds\expected_energy_positivity_random_test.csv");

            double        energy_total     = 0;
            double        energy_mean      = 0;
            double        energy_SStot     = 0;
            double        energy_SSreg     = 0;
            double        energy_SSres     = 0;
            double        energy_r_squared = 0;
            double        energy_accuracy  = 0;
            double        energy_rmse      = 0;
            int           energy_correct   = 0;
            List <double> energy_predicted = new List <double>();
            List <double> energy_stds      = new List <double>();
            List <double> energy_expected  = new List <double>();

            double        positivity_total     = 0;
            double        positivity_mean      = 0;
            double        positivity_SStot     = 0;
            double        positivity_SSreg     = 0;
            double        positivity_SSres     = 0;
            double        positivity_r_squared = 0;
            double        positivity_accuracy  = 0;
            double        positivity_rmse      = 0;
            int           positivity_correct   = 0;
            List <double> positivity_predicted = new List <double>();
            List <double> positivity_stds      = new List <double>();
            List <double> positivity_expected  = new List <double>();

            List <string> songPaths = new List <string>();

            foreach (string line in songLines)
            {
                //Get expected values
                string[] parts              = line.Split(',');
                string   songPath           = Path.Combine(directory, parts[0]);
                double   expectedEnergy     = double.Parse(parts[1]);
                double   expectedPositivity = double.Parse(parts[2]);
                double   energyStd          = double.Parse(parts[3]);
                double   positivityStd      = double.Parse(parts[4]);

                songPaths.Add(songPath);
                energy_expected.Add(expectedEnergy);
                energy_stds.Add(energyStd);

                positivity_expected.Add(expectedPositivity);
                positivity_stds.Add(positivityStd);
            }

            //Classify
            string jsonOutput = svm.Classify(songPaths.ToArray());

            //Retrieve the results
            JsonDTO jsonDTO = new System.Web.Script.Serialization.JavaScriptSerializer().Deserialize <JsonDTO>(jsonOutput);
            List <Framework.ClassifierResult> classifierResults = jsonDTO.ClassifierResults;

            //Get stastics
            //Assuming output is in same order as input (it should be)
            foreach (Framework.ClassifierResult result in classifierResults)
            {
                double predictedEnergy     = result.song.energy;
                double predictedPositivity = result.song.positivity;

                energy_total     += predictedEnergy;
                positivity_total += predictedPositivity;

                energy_predicted.Add(predictedEnergy);
                positivity_predicted.Add(predictedPositivity);
            }

            energy_mean     = energy_total / energy_predicted.Count();
            positivity_mean = positivity_total / positivity_predicted.Count();

            for (int i = 0; i < positivity_predicted.Count(); i++)
            {
                double predictedEnergy = energy_predicted[i];
                double expectedEnergy  = energy_expected[i];
                double energyStd       = energy_stds[i];

                double predictedPositivity = positivity_predicted[i];
                double expectedPositivity  = positivity_expected[i];
                double positivityStd       = positivity_stds[i];

                energy_correct += Math.Abs(predictedEnergy - expectedEnergy) < energyStd ? 1 : 0;
                energy_SSres   += Math.Pow(predictedEnergy - expectedEnergy, 2);
                energy_SSreg   += Math.Pow(predictedEnergy - energy_mean, 2);
                energy_SStot   += Math.Pow(expectedEnergy - energy_mean, 2);

                positivity_correct += Math.Abs(predictedPositivity - expectedPositivity) < positivityStd ? 1 : 0;
                positivity_SSres   += Math.Pow(predictedPositivity - expectedPositivity, 2);
                positivity_SSreg   += Math.Pow(predictedPositivity - positivity_mean, 2);
                positivity_SStot   += Math.Pow(expectedPositivity - positivity_mean, 2);
            }
            energy_accuracy  = (double)energy_correct / energy_predicted.Count();
            energy_r_squared = 1 - energy_SSreg / energy_SStot;
            energy_rmse      = Math.Pow(energy_SStot / energy_predicted.Count(), 0.5);

            positivity_accuracy  = (double)positivity_correct / positivity_predicted.Count();
            positivity_r_squared = 1 - positivity_SSreg / positivity_SStot;
            positivity_rmse      = Math.Pow(positivity_SStot / positivity_predicted.Count(), 0.5);

            //Print
            System.Console.WriteLine("Accuracy (energy)\t=\t" + energy_accuracy * 100 + "%");
            System.Console.WriteLine("Accuracy (positivity)\t=\t" + positivity_accuracy * 100 + "%");
            System.Console.WriteLine("Accuracy (total)\t=\t" + energy_accuracy * positivity_accuracy * 100 + "%");
            System.Console.WriteLine();
            System.Console.WriteLine("RMSE (energy)\t\t=\t" + energy_rmse);
            System.Console.WriteLine("RMSE (positivity)\t=\t" + positivity_rmse);
            System.Console.WriteLine();
            System.Console.WriteLine("R^2 (energy)\t\t=\t" + energy_r_squared);
            System.Console.WriteLine("R^2 (positivity)\t=\t" + positivity_r_squared);

            System.Console.ReadKey();
        }