//*********************************************************************** // Generates a random number with the specified number of bits such // that gcd(number, this) = 1 //*********************************************************************** public BigInteger genCoPrime(int bits, Random rand) { bool done = false; BigInteger result = new BigInteger(); while (!done) { result.genRandomBits(bits, rand); //Console.WriteLine(result.ToString(16)); // gcd test BigInteger g = result.gcd(this); if (g.DataLength == 1 && g._data[0] == 1) done = true; } return result; }
private bool LucasStrongTestHelper(BigInteger thisVal) { // Do the test (selects D based on Selfridge) // Let D be the first element of the sequence // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 // Let P = 1, Q = (1-D) / 4 long D = 5, sign = -1, dCount = 0; bool done = false; while (!done) { int Jresult = BigInteger.Jacobi(D, thisVal); if (Jresult == -1) done = true; // J(D, this) = 1 else { if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found return false; if (dCount == 20) { // check for square BigInteger root = thisVal.sqrt(); if (root * root == thisVal) return false; } //Console.WriteLine(D); D = (Math.Abs(D) + 2) * sign; sign = -sign; } dCount++; } long Q = (1 - D) >> 2; /* Console.WriteLine("D = " + D); Console.WriteLine("Q = " + Q); Console.WriteLine("(n,D) = " + thisVal.gcd(D)); Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); */ BigInteger p_add1 = thisVal + 1; int s = 0; for (int index = 0; index < p_add1.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_add1._data[index] & mask) != 0) { index = p_add1.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = thisVal.DataLength << 1; constant._data[nLen] = 0x00000001; constant.DataLength = nLen + 1; constant = constant / thisVal; BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if ((lucas[0].DataLength == 1 && lucas[0]._data[0] == 0) || (lucas[1].DataLength == 1 && lucas[1]._data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for (int i = 1; i < s; i++) { if (!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if ((lucas[1].DataLength == 1 && lucas[1]._data[0] == 0)) isPrime = true; } lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k } if (isPrime) // additional checks for composite numbers { // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.gcd(Q); if (g.DataLength == 1 && g._data[0] == 1) // gcd(this, Q) == 1 { if ((lucas[2]._data[MaxLength - 1] & 0x80000000) != 0) lucas[2] += thisVal; BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal; if ((temp._data[MaxLength - 1] & 0x80000000) != 0) temp += thisVal; if (lucas[2] != temp) isPrime = false; } } return isPrime; }
//*********************************************************************** // Probabilistic prime test based on Rabin-Miller's // // for any p > 0 with p - 1 = 2^s * t // // p is probably prime (strong pseudoprime) if for any a < p, // 1) a^t mod p = 1 or // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a strong pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool RabinMillerTest(int confidence) { BigInteger thisVal; if ((this._data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal._data[0] == 0 || thisVal._data[0] == 1) return false; else if (thisVal._data[0] == 2 || thisVal._data[0] == 3) return true; } if ((thisVal._data[0] & 0x1) == 0) // even numbers return false; // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1._data[index] & mask) != 0) { index = p_sub1.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1) return false; BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if (b.DataLength == 1 && b._data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } if (result == false) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // // where J is the Jacobi symbol. // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if ((this._data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal._data[0] == 0 || thisVal._data[0] == 1) return false; else if (thisVal._data[0] == 2 || thisVal._data[0] == 3) return true; } if ((thisVal._data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1) return false; // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if (expResult == p_sub1) expResult = -1; // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if (expResult != jacob) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Fermat's little theorem // // for any a < p (p does not divide a) if // a^(p-1) mod p != 1 then p is not prime. // // Otherwise, p is probably prime (pseudoprime to the chosen base). // // Returns // ------- // True if "this" is a pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // // Note - this method is fast but fails for Carmichael numbers except // when the randomly chosen base is a factor of the number. // //*********************************************************************** public bool FermatLittleTest(int confidence) { BigInteger thisVal; if ((this._data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal._data[0] == 0 || thisVal._data[0] == 1) return false; else if (thisVal._data[0] == 2 || thisVal._data[0] == 3) return true; } if ((thisVal._data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1) return false; // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.DataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult._data[0] != 1)) { //Console.WriteLine("a = " + a.ToString()); return false; } } return true; }