static void Main(string[] args) { var device = DeviceDescriptor.GPUDevice(0); Console.WriteLine($"======== running LogisticRegression.TrainAndEvaluate using {device.Type} ========"); LogisticRegression.TrainAndEvaluate(device); Console.WriteLine($"======== running MNISTClassifier.TrainAndEvaluate with multilayer perceptron (MLP) classifier using {device.Type} ========"); MNISTClassifier.TrainAndEvaluate(device, false, true); Console.WriteLine($"======== running MNISTClassifier.TrainAndEvaluate with convolutional neural network using {device.Type} ========"); MNISTClassifier.TrainAndEvaluate(device, true, true); Console.WriteLine($"======== running CifarResNet.TrainAndEvaluate using {device.Type} ========"); CifarResNetClassifier.TrainAndEvaluate(device, true); Console.WriteLine($"======== running TransferLearning.TrainAndEvaluateWithFlowerData using {device.Type} ========"); TransferLearning.TrainAndEvaluateWithFlowerData(device, true); Console.WriteLine($"======== running TransferLearning.TrainAndEvaluateWithAnimalData using {device.Type} ========"); TransferLearning.TrainAndEvaluateWithAnimalData(device, true); Console.WriteLine($"======== running LSTMSequenceClassifier.Train using {device.Type} ========"); LSTMSequenceClassifier.Train(device); }
static void Main(string[] args) { var device = DeviceDescriptor.GPUDevice(0); Console.WriteLine($"======== runing MNISTClassifierTest.TrainAndEvaluate using {device.Type} with logistic classifier ========"); MNISTClassifier.TrainAndEvaluate(device, false, true); Console.WriteLine($"======== runing MNISTClassifierTest.TrainAndEvaluate using {device.Type} with convolution classifier ========"); MNISTClassifier.TrainAndEvaluate(device, true, true); Console.WriteLine($"======== runing CifarResNet.TrainAndEvaluate using {device.Type} ========"); CifarResNetClassifier.TrainAndEvaluate(device, true); Console.WriteLine($"======== runing TransferLearning.TrainAndEvaluateWithFlowerData using {device.Type} ========"); TransferLearning.TrainAndEvaluateWithFlowerData(device, true); Console.WriteLine($"======== runing TransferLearning.TrainAndEvaluateWithAnimalData using {device.Type} ========"); TransferLearning.TrainAndEvaluateWithAnimalData(device, true); Console.WriteLine($"======== runing LSTMSequenceClassifier.Train using {device.Type} ========"); LSTMSequenceClassifier.Train(device, true); }
static void Main(string[] args) { TestCommon.TestDataDirPrefix = "../../"; var device = DeviceDescriptor.GPUDevice(0); Console.WriteLine($"======== running LogisticRegression.TrainAndEvaluate using {device.Type} ========"); LogisticRegression.TrainAndEvaluate(device); Console.WriteLine($"======== running MNISTClassifier.TrainAndEvaluate with multilayer perceptron (MLP) classifier using {device.Type} ========"); MNISTClassifier.TrainAndEvaluate(device, false, true); Console.WriteLine($"======== running MNISTClassifier.TrainAndEvaluate with convolutional neural network using {device.Type} ========"); MNISTClassifier.TrainAndEvaluate(device, true, true); Console.WriteLine($"======== running CifarResNet.TrainAndEvaluate using {device.Type} ========"); CifarResNetClassifier.CifarDataFolder = "../../Examples/Image/DataSets/CIFAR-10"; CifarResNetClassifier.TrainAndEvaluate(device, true); TestCommon.TestDataDirPrefix = "../../Examples/Image/DataSets/"; string modelFileSourceDir = "../../PretrainedModels/ResNet_18.model"; if (!File.Exists(modelFileSourceDir)) { Console.WriteLine("Model file doesn't exist. Please run download_model.py in CNTK/CNTK/PretrainedModels"); Console.ReadKey(); return; } TransferLearning.BaseResnetModelFile = "ResNet_18.model"; File.Copy(modelFileSourceDir, TransferLearning.ExampleImageFolder + TransferLearning.BaseResnetModelFile, /*overwrite*/ true); Console.WriteLine($"======== running TransferLearning.TrainAndEvaluateWithAnimalData using {device.Type} ========"); TransferLearning.TrainAndEvaluateWithAnimalData(device, true); TestCommon.TestDataDirPrefix = "../../"; Console.WriteLine($"======== running LSTMSequenceClassifier.Train using {device.Type} ========"); LSTMSequenceClassifier.Train(device); }